Because the Atomic Mass of aluminum is 26.99, this means that there are 26.99 grams of aluminum in one mole. For 3 moles multiply 26.99 by 3 = 80.97grams.
To determine how many moles of aluminum are produced from 33 grams, divide the given mass by the molar mass of aluminum, which is approximately 26.98 g/mol. So, 33 g / 26.98 g/mol ≈ 1.22 moles of aluminum are produced.
To convert moles to grams, you need to use the molar mass of the substance. The molar mass of aluminum phosphate is 122.94 g/mol. Therefore, for 5.5 moles of aluminum phosphate, you would have 5.5 moles x 122.94 g/mol = 676.17 grams of aluminum phosphate.
To convert moles to grams, you need to use the molar mass of aluminum phosphate. The molar mass of aluminum phosphate (AlPO4) is 122.98 g/mol. Therefore, 6.5 moles of aluminum phosphate would be 6.5 moles * 122.98 g/mol = 798.37 grams.
Given the balanced chemical equation: 4Al + 3O2 → 2Al2O3, we can see that 4 moles of aluminum react with 3 moles of oxygen to produce 2 moles of aluminum oxide. In this case, 18.32 grams of aluminum is equivalent to 0.684 moles. Using stoichiometry, we find that this would produce 0.456 grams of aluminum oxide.
To determine the grams of aluminum oxide formed, we need to consider the balanced chemical equation for the reaction between aluminum and oxygen. The molar ratio between aluminum and aluminum oxide is 4:2. So, first calculate the moles of aluminum in 1020g, then use this to find the moles of aluminum oxide produced, and finally convert moles of aluminum oxide to grams.
1,99 grams of aluminum is equal to 0,0737 moles.
10 grams aluminum (1 mole Al/26.98 grams) = 0.37 moles of aluminum ---------------------------------
4,12 grams aluminum sulfate is equivalent to 0,012 moles (for the anhydrous salt).
To determine how many moles of aluminum are produced from 33 grams, divide the given mass by the molar mass of aluminum, which is approximately 26.98 g/mol. So, 33 g / 26.98 g/mol ≈ 1.22 moles of aluminum are produced.
To convert moles to grams, you need to use the molar mass of the substance. The molar mass of aluminum phosphate is 122.94 g/mol. Therefore, for 5.5 moles of aluminum phosphate, you would have 5.5 moles x 122.94 g/mol = 676.17 grams of aluminum phosphate.
To convert moles to grams, you need to use the molar mass of aluminum phosphate. The molar mass of aluminum phosphate (AlPO4) is 122.98 g/mol. Therefore, 6.5 moles of aluminum phosphate would be 6.5 moles * 122.98 g/mol = 798.37 grams.
9 grams aluminum (1 mole Al/26.98 grams) = 0.3 moles aluminum ==============
Given the balanced chemical equation: 4Al + 3O2 → 2Al2O3, we can see that 4 moles of aluminum react with 3 moles of oxygen to produce 2 moles of aluminum oxide. In this case, 18.32 grams of aluminum is equivalent to 0.684 moles. Using stoichiometry, we find that this would produce 0.456 grams of aluminum oxide.
For this you need the atomic mass of Al. Take the number of moles and multiply it by the atomic mass. Divide by one mole for units to cancel.2.91 moles Al × (27.0 grams) = 78.6 grams Al
To determine the grams of aluminum oxide formed, we need to consider the balanced chemical equation for the reaction between aluminum and oxygen. The molar ratio between aluminum and aluminum oxide is 4:2. So, first calculate the moles of aluminum in 1020g, then use this to find the moles of aluminum oxide produced, and finally convert moles of aluminum oxide to grams.
To determine the grams of oxygen used, we need to compare the moles of aluminum with the moles of oxygen in the reaction. The balanced chemical equation for the reaction between aluminum and oxygen is 4Al + 3O2 -> 2Al2O3. Using the molar mass of aluminum (26.98 g/mol) and oxygen (16.00 g/mol), we can calculate that 18.32 grams of aluminum would use 27.27 grams of oxygen in the reaction.
Well to find how many grams are in moles you would eventually multiply the mole by the molar mass. The molar mass of aluminum oxide would be 101.96 ( you would find that by multiplying the atomic mass of al by 2 and o by 3 and adding them together). But the molar mass of Oxygen is just about 48 (rounded to 16 instead of 15.9994)5.75 moles of Al2O3 X 48 g oxygen/1 mole of Al2O3=276 g oxygen in 5.75 mole Al2O3