How many moles are present in 92 grams of ethyl alcohol?
To calculate the mass of 0.5623 moles of ethanol (C2H5OH), you need to use the molecular weight of ethanol, which is approximately 46.07 g/mol. Multiply the number of moles by the molecular weight to get the mass: 0.5623 moles x 46.07 g/mol ≈ 25.89 grams. Therefore, the mass of 0.5623 moles of ethanol is approximately 25.89 grams.
To find the mole fraction of ethanol (C2H5OH), you first need to calculate the moles of ethanol in the solution. Then, calculate the total moles of all components in the solution. Finally, divide the moles of ethanol by the total moles to get the mole fraction. In this case, since the solution is 50% ethanol by mass, you can assume 50 g of the solution to make calculations simpler.
To find the ethanol molarity in a solution, you would divide the moles of ethanol by the volume of the solution in liters. The formula for molarity is M moles of solute / liters of solution.
The balanced chemical equation for the reaction of ethanol with oxygen to form carbon dioxide and water is C2H5OH + 3O2 -> 2CO2 + 3H2O. From this equation, we can see that 3 moles of oxygen are needed to react with 1 mole of ethanol. Therefore, 2 moles of ethanol will require 6 moles of oxygen to react. To find the grams of oxygen, you can multiply the moles of oxygen by its molar mass (32 g/mol).
5.0M Molarity is moles of solute/liters of solution. The molar mass of ethanol is 46.07 g/mol, so 115g of ethanol is 2.5 moles of ethanol. 500cc is the same as 0.5L. So 2.5 mol/0.5L = 5.0M
The mass of 2 moles of ethyl alcohol would be 92,14 grams.
To find the mole fraction of ethanol, you first calculate the total moles of the solution, which is 3.00 + 5.00 = 8.00 moles. Then, you divide the moles of ethanol by the total moles of the solution: 3.00 moles / 8.00 moles = 0.375. So, the mole fraction of ethanol in the solution is 0.375.
To form ethanol, the chemical equation shows that one mole of glucose is converted to two moles of ethanol. The molar mass of glucose is around 180 g/mol and that of ethanol is around 46 g/mol. Therefore, to produce 127g of ethanol, you would need 127g/(46g/mol) = 2.76 moles of ethanol. Since glucose to ethanol is a 1:2 ratio, you would need half as many moles of glucose, which would be 1.38 moles of glucose.
To calculate the mass of 0.5623 moles of ethanol (C2H5OH), you need to use the molecular weight of ethanol, which is approximately 46.07 g/mol. Multiply the number of moles by the molecular weight to get the mass: 0.5623 moles x 46.07 g/mol ≈ 25.89 grams. Therefore, the mass of 0.5623 moles of ethanol is approximately 25.89 grams.
To find the mole fraction of ethanol (C2H5OH), you first need to calculate the moles of ethanol in the solution. Then, calculate the total moles of all components in the solution. Finally, divide the moles of ethanol by the total moles to get the mole fraction. In this case, since the solution is 50% ethanol by mass, you can assume 50 g of the solution to make calculations simpler.
To find the ethanol molarity in a solution, you would divide the moles of ethanol by the volume of the solution in liters. The formula for molarity is M moles of solute / liters of solution.
The balanced chemical equation for the reaction of ethanol with oxygen to form carbon dioxide and water is C2H5OH + 3O2 -> 2CO2 + 3H2O. From this equation, we can see that 3 moles of oxygen are needed to react with 1 mole of ethanol. Therefore, 2 moles of ethanol will require 6 moles of oxygen to react. To find the grams of oxygen, you can multiply the moles of oxygen by its molar mass (32 g/mol).
AnswerThe density of ethanol is 0.789 g/cm³ , and there are 1000 cm3 in a liter, so 1 liter weighs 0.789 kilograms.Density = mass/volume, So mass=density*volume.So, weight of 1L ethanol = 0.789*1 => 0.789KG
32 g ethanol is equivalent to 0,695 moles.
5.0M Molarity is moles of solute/liters of solution. The molar mass of ethanol is 46.07 g/mol, so 115g of ethanol is 2.5 moles of ethanol. 500cc is the same as 0.5L. So 2.5 mol/0.5L = 5.0M
To calculate the energy absorbed, first convert the mass of ethanol from grams to moles. 356 g of ethanol is 356/46.0 = 7.74 moles. Then, multiply the moles of ethanol by the heat of vaporization: 7.74 mol * 38.6 kJ/mol = 298.56 kJ of energy absorbed.
To find the number of moles in 508g of ethanol (C2H5OH), first calculate the molar mass of ethanol: 2(12.01) + 6(1.01) + 1(16.00) = 46.08 g/mol. Next, divide the given mass by the molar mass to find the number of moles: 508g / 46.08 g/mol ≈ 11 moles.