To determine the number of moles in 4g of sodium hydroxide (NaOH), divide the mass by the molar mass of NaOH. The molar mass of NaOH is approximately 40g/mol (Na = 23g/mol, O = 16g/mol, H = 1g/mol). Therefore, 4g of NaOH is equal to 0.1 moles.
60 g NaOH x 1 mole NaOH/40 g NaOH = 1.5 moles NaOH
To determine the number of moles in 20g of sodium hydroxide, you need to divide the given mass by the molar mass of sodium hydroxide. The molar mass of NaOH is 40 g/mol (sodium: 23 g/mol, oxygen: 16 g/mol, hydrogen: 1 g/mol). So, 20g NaOH / 40 g/mol = 0.5 moles of sodium hydroxide.
To solve this stoichiometry problem, first calculate the number of moles of sodium hydroxide (NaOH) present in 200 grams. Then, using the balanced equation, determine the moles of sodium sulfate (Na2SO4) that will be formed. Finally, convert the moles of Na2SO4 to grams using the molar mass of sodium sulfate.
First construct a a balanced equation for the reaction : 2Na + 2H2O --> 2NaOH + H2 From the equation, we know that the ratio of Sodium(Na) to the ratio of Sodium Hydroxide(NaOH) is the same. Ar of Na = 23g/mol Number of moles = mass / Ar = 46g / 23g/mol = 2mol (moles of Na used) Since ratio of Na to NaOH is the same, therefore there are also 2 moles of NaOH formed.
1. Three moles of sodium contain 18,06642387.1023 atoms. 2. The mass of three moles of sodium is 68,97 grams.
In the acid-base reaction where sodium hydroxide and sulfuric acid react, the formula is: H2SO4 + 2NaOH --> Na2SO4 + 2H2O. The coefficients shown are necessary to uphold the law of conservation of mass. So, if you have 17 moles of sulfuric acid, you will need twice as many moles of sodium hydroxide, so the answer is 34 moles NaOH.
No amount of sodium sulphate can be formed from sodium hydroxide alone, because sodium sulfate contains sulfur and sodium hydroxide does not. By neutralization with sulphuric acid, one formula unit of sodium sulphate can be formed from two moles of sodium hydroxide, according to the equation 2 NaOH + H2SO4 -> Na2SO4 + 2 H2O.
To calculate the grams of sodium hydroxide present in the solution, first calculate the number of moles using the formula: moles = Molarity (M) x Volume (L). Then, use the molar mass of sodium hydroxide (NaOH) to convert moles to grams. The molar mass of NaOH is 40 g/mol. Thus, in this case, you have 0.3375 moles of NaOH and if you convert this to grams, it would be 13.5 grams.
0.2 mol
60 g NaOH x 1 mole NaOH/40 g NaOH = 1.5 moles NaOH
Sodium reacts with water. 0.652 NaOH moles will form.
To determine the number of moles in 20g of sodium hydroxide, you need to divide the given mass by the molar mass of sodium hydroxide. The molar mass of NaOH is 40 g/mol (sodium: 23 g/mol, oxygen: 16 g/mol, hydrogen: 1 g/mol). So, 20g NaOH / 40 g/mol = 0.5 moles of sodium hydroxide.
The molecular weight of sodium hydroxide is 40g/mol. To get the amount of moles, you have to divide the weight by molecular mass. 12g / 40 is 0.3 moles. This is 300 millimoles.
To solve this stoichiometry problem, first calculate the number of moles of sodium hydroxide (NaOH) present in 200 grams. Then, using the balanced equation, determine the moles of sodium sulfate (Na2SO4) that will be formed. Finally, convert the moles of Na2SO4 to grams using the molar mass of sodium sulfate.
1. Three moles of sodium contain 18,06642387.1023 atoms. 2. The mass of three moles of sodium is 68,97 grams.
To find the grams of sodium hydroxide in 0.150 mol, first calculate the molar mass of sodium hydroxide, which is approximately 40 g/mol. Then, multiply the molar mass by the number of moles: 40 g/mol x 0.150 mol = 6 grams of sodium hydroxide.
To find the number of moles in 4.75g of sodium hydroxide, you first need to determine the molar mass of sodium hydroxide (NaOH), which is about 40g/mol. Then divide the given mass (4.75g) by the molar mass to obtain the number of moles: 4.75g / 40g/mol = 0.119 moles of NaOH.