A. A balance chemical equation of burning of ethene is
C2H4 + 3O2 ____ 2CO2 + 2H2O
now according to balance chemical equation
1 mole of ethene burn by using 3 moles of oxygen so to burn
10 moles of ethene 3 x 10 30 moles of oxygen will be required.
For the decomposition of potassium chlorate, the molar ratio between potassium chlorate (KClO3) and oxygen (O2) is 2:3. Therefore, to produce 15 moles of oxygen, 10 moles of potassium chlorate are needed. (15 moles O2) x (2 moles KClO3 / 3 moles O2) = 10 moles KClO3.
Concentration of NaOH = 0.025 M = 0.025 Moles per Litre of SolutionVolume of Solution required = 5.00LWe can say therefore that:Number of Moles of NaOH needed to prepare the solution= Concentration of NaOH * Volume of Solution requiredTherefore:Number of Moles of NaOH needed to prepare the solution= 0.025M * 5.00L= 0.125molesFrom this we can say that 0.125 moles of NaOH are needed to prepare a 5.00 L solution with a concentration of 0.025M of NaOH.
To find the total number of moles needed, use the formula n = M x V, where n is the number of moles, M is the molarity, and V is the volume in liters. Thus, n = 2.0 mol/L x 5.0 L = 10 moles of H2SO4 are needed.
From the balanced equation, 2 moles of A3 react with 3 moles of B2 to produce 6 moles of AB. Therefore, if 10 moles of A3 are reacted, the ratio of moles of AB produced would be (10 moles A3 / 2 moles A3) * 6 moles AB = 30 moles AB.
For every 2 moles of A3, 3 moles of B2 react to form 6 moles of AB. Since we have 10 moles of A3, we need to double the moles of B2 reacting, which would be 15 moles of B2 to fully react with the 10 moles of A3. This would produce 30 moles of AB.
10 moles of nitrogen dioxide are needed to react with 5,0 moles of water.
For the decomposition of potassium chlorate, the molar ratio between potassium chlorate (KClO3) and oxygen (O2) is 2:3. Therefore, to produce 15 moles of oxygen, 10 moles of potassium chlorate are needed. (15 moles O2) x (2 moles KClO3 / 3 moles O2) = 10 moles KClO3.
10
The reaction of nitrogen with hydrogen to form ammonia is: N2 +3H2 = 2NH3 Therefore to make 10 moles of ammonia you need 5 moles N2 and 15 moles H2
The answer is 10 moles.
Concentration of NaOH = 0.025 M = 0.025 Moles per Litre of SolutionVolume of Solution required = 5.00LWe can say therefore that:Number of Moles of NaOH needed to prepare the solution= Concentration of NaOH * Volume of Solution requiredTherefore:Number of Moles of NaOH needed to prepare the solution= 0.025M * 5.00L= 0.125molesFrom this we can say that 0.125 moles of NaOH are needed to prepare a 5.00 L solution with a concentration of 0.025M of NaOH.
The answer is 7,18.10e-10 moles.
To find the total number of moles needed, use the formula n = M x V, where n is the number of moles, M is the molarity, and V is the volume in liters. Thus, n = 2.0 mol/L x 5.0 L = 10 moles of H2SO4 are needed.
The balanced chemical equation for the reaction between ammonia (NH3) and oxygen gas (O2) is 4 NH3 + 5 O2 → 4 NO + 6 H2O. This means that 5 moles of O2 are needed to react with 4 moles of NH3. With 10.0 moles of NH3, you would need 12.5 moles of O2 (10.0 moles NH3 x 5 moles O2 / 4 moles NH3).
The answer is 10 moles of carbon monoxide.2 C + O2 = 2 CO
There are 50 moles in 5 liters of 10 M LiCl (10 molar lithium chloride).
From the balanced equation, 2 moles of A3 react with 3 moles of B2 to produce 6 moles of AB. Therefore, if 10 moles of A3 are reacted, the ratio of moles of AB produced would be (10 moles A3 / 2 moles A3) * 6 moles AB = 30 moles AB.