95,474 moles
To find the total moles of KNO3 needed, use the formula: moles = molarity x volume (in liters). So, moles = 2.0 mol/L x 1.5 L = 3.0 moles of KNO3. Therefore, 3.0 moles of KNO3 need to be dissolved in water to make 1.5 liters of a 2.0 M solution.
To make a 2 M solution of KCl in 4 L of water, you would need 8 moles of KCl. This is because Molarity (M) is defined as moles of solute divided by liters of solution. In this case, 2 M means 2 moles of KCl per liter, which totals 8 moles for 4 liters.
To find the number of moles of sodium chloride, you can multiply the volume of the solution by its molarity. moles = volume (L) * molarity moles = 5.08 L * 2.36 mol/L moles = 11.9928 mol Therefore, there are approximately 11.99 moles of sodium chloride in 5.08 L of a 2.36 M solution.
First, calculate the number of moles of NaOH: Moles = Molarity x Volume (L) Convert mL to L: 450 mL = 0.45 L Moles = 0.25 N x 0.45 L = 0.1125 moles of NaOH.
To find the number of moles, first calculate the number of moles of HCl in the 50 mL solution by multiplying the volume (in liters) by the molarity. Volume in liters = 50 mL / 1000 mL/L = 0.05 L Moles = 0.05 L * 6.0 mol/L = 0.3 moles of HCl.
1 liter of (liquid) water contains 55.5 moles.
4,54 L of CO have 0,182 moles.
0.0747mol/L of HCL 1.81mol/L of water
0,125 L neon is equivalent to 0,0056 moles.
To find the number of moles of water, you first need to convert the volume (250.0 mL) to liters by dividing by 1000 (since 1 L = 1000 mL). This gives you 0.250 L. From there, you can use the molar volume of water (18.02 g/mol) and the molar mass of water (18.02 g/mol) to calculate the number of moles using the formula moles = mass/molar mass.
moles KCL = ( M solution ) ( L of solution )moles KCl = ( 0.83 mol KCl / L ) ( 1.7 L ) = 1.41 moles KCl
Molarity is moles of solute per L of solution.moles KCl = ( 1.68 M ) ( 0.121 L ) = ( 1.68 mol/L ) ( 0.121 L )moles KCl = 0.203 moles KCl
The answer is 14,93 moles.
moles KCl = ( M solution ) ( V solution in L )moles KCl = ( 2.2 mol KCl / L solution ) ( 0.635 L of solution )moles KCl = 1.397 moles KCl
8 mles
To find the total moles of KNO3 needed, use the formula: moles = molarity x volume (in liters). So, moles = 2.0 mol/L x 1.5 L = 3.0 moles of KNO3. Therefore, 3.0 moles of KNO3 need to be dissolved in water to make 1.5 liters of a 2.0 M solution.
To make a 2 M solution of KCl in 4 L of water, you would need 8 moles of KCl. This is because Molarity (M) is defined as moles of solute divided by liters of solution. In this case, 2 M means 2 moles of KCl per liter, which totals 8 moles for 4 liters.