Micromolar solution:
Suppose 300 is mol wt of compound
then
300g in 1000 ml -- it becomes 1M
300,000 mg in 1000 ml ---it is also 1 Molar
1 mg=1000 microgram
hence
300,000,000 microgram in 1000 ml ----it is 1 molar
now
300,000 microgram in 1 ml ----it is 1 Molar
1 molar=1000 milimolar
hence
300,000 microgram in 1 ml -----1000 milimolar
300,000 ----------------------------- 1000,000 micromolar
0.3 microgram --in 1 ml it is 1 micromolar
simillarly convert the ml as you want
The concentration of the solution is expressed in micromolar units.
The micromolar concentration of the solution is 50 M.
Micromolar (uM) is a unit of concentration commonly used in chemistry and biology to represent a concentration of a substance that is equal to one millionth of a mole per liter of solution. It is often used to describe the concentration of ions or molecules in a solution.
5 millimolar (5 thousandths of a mole per liter) is equal to 5000 micromolar ( 5000 millionths of a mole per liter). To make a 50 micromolar solution from 5 millimolar stock solution, you therefore need 5000/50 = 100 fold dilution. Remove a 10 ml aliquot of stock and transfer to a 1000ml (1 liter) volumetric flask. Dilute with the solvent -usually water, and fill up to the graduation mark. You will now have 1 liter (1000 ml) of 50 micromolar solution.
The concentration of the solution is expressed in micromolar units, which is a measurement of the amount of a substance dissolved in a solution. It is commonly denoted as M and represents a concentration of one millionth of a mole per liter.
There are 10 nanomoles in a 10 micromolar stock solution due to the conversion factor: 1 micromolar = 1,000 nanomoles/mL.
The concentration of the solution is expressed in micromolar units.
The micromolar concentration of the solution is 50 M.
Micromolar (uM) is a unit of concentration commonly used in chemistry and biology to represent a concentration of a substance that is equal to one millionth of a mole per liter of solution. It is often used to describe the concentration of ions or molecules in a solution.
5 millimolar (5 thousandths of a mole per liter) is equal to 5000 micromolar ( 5000 millionths of a mole per liter). To make a 50 micromolar solution from 5 millimolar stock solution, you therefore need 5000/50 = 100 fold dilution. Remove a 10 ml aliquot of stock and transfer to a 1000ml (1 liter) volumetric flask. Dilute with the solvent -usually water, and fill up to the graduation mark. You will now have 1 liter (1000 ml) of 50 micromolar solution.
The concentration of the solution is expressed in micromolar units, which is a measurement of the amount of a substance dissolved in a solution. It is commonly denoted as M and represents a concentration of one millionth of a mole per liter.
To prepare a 0.01N KBr solution, dissolve 0.74g of KBr in 1 liter of water. This will give you a solution with a molarity of 0.01N for KBr.
To prepare 0.1N NaOH solution from a 1N NaOH solution, you can dilute 1 part of the 1N solution with 9 parts of water (since 1/10 = 0.1). Measure 1 volume of the 1N NaOH solution and add 9 volumes of water to it, then mix well to get your 0.1N NaOH solution.
To prepare a 2 ppm solution of nickel nitrate, you would dissolve 2 grams of nickel nitrate in enough water to make 1 liter of solution. This will result in a solution where there are 2 parts of nickel nitrate for every 1 million parts of water.
To prepare a 3% solution of sulfosalicylic acid, you would need 30 grams of sulfosalicylic acid for every 1 liter of solution.
To prepare 1 N ferrous ammonium sulfate solution, dissolve 392.15 g of the compound in distilled water and dilute to 1 L. This will yield a solution with a concentration of 1 N.
To prepare 1 M CaI aqueous solution, dissolve 29.4 g in a total volume of 100 mls, or 294 g in a total volume of 1 liter.