answersLogoWhite

0

The order of the reaction with respect to the concentration of A refers to how the rate of the reaction changes with changes in the concentration of A. It can be zero order, first order, second order, etc., depending on how the rate is affected by the concentration of A.

User Avatar

AnswerBot

5mo ago

What else can I help you with?

Continue Learning about Chemistry

What is the order of the reaction with respect to ozone?

The order of the reaction with respect to ozone is the exponent in the rate equation that indicates how the concentration of ozone affects the rate of the reaction.


How can one determine the order of a reaction from a table?

To determine the order of a reaction from a table, you can look at how the rate of the reaction changes with the concentration of reactants. If doubling the concentration of a reactant doubles the rate, the reaction is first order with respect to that reactant. If doubling the concentration quadruples the rate, the reaction is second order. And if doubling the concentration increases the rate by a factor of eight, the reaction is third order.


How can one determine the order of reaction in a chemical reaction?

The order of a reaction can be determined by conducting experiments where the concentration of reactants is varied and the rate of the reaction is measured. By analyzing how changes in concentration affect the rate, one can determine the order of the reaction with respect to each reactant.


How can one determine the reaction order from concentration and time data?

To determine the reaction order from concentration and time data, one can use the method of initial rates. By comparing the initial rates of the reaction at different concentrations of reactants, the reaction order can be determined based on how the rate changes with respect to the concentration of each reactant.


How can one determine the order of reaction from a given table of data?

To determine the order of reaction from a given table of data, you can look at how the rate of the reaction changes with the concentration of the reactants. If the rate is directly proportional to the concentration of a reactant, the reaction is first order with respect to that reactant. If the rate is proportional to the square of the concentration, the reaction is second order. By analyzing the data and observing how the rate changes with different concentrations, you can determine the order of the reaction.

Related Questions

If you double a concentration of a reactant then the rate of the reaction doubled The order with respect to the reactant is?

The reaction is first order with respect to the reactant. In a first-order reaction, the rate is directly proportional to the concentration of the reactant. Doubling the concentration of a reactant will result in a doubling of the reaction rate.


What is the order of the reaction with respect to ozone?

The order of the reaction with respect to ozone is the exponent in the rate equation that indicates how the concentration of ozone affects the rate of the reaction.


How can one determine the order of a reaction from a table?

To determine the order of a reaction from a table, you can look at how the rate of the reaction changes with the concentration of reactants. If doubling the concentration of a reactant doubles the rate, the reaction is first order with respect to that reactant. If doubling the concentration quadruples the rate, the reaction is second order. And if doubling the concentration increases the rate by a factor of eight, the reaction is third order.


How is rate of a chemical reaction usually expressed?

Rates of reaction can be expressed depending upon their order.For example say you have a reaction between two chemicals and the initial rate for that reaction is known :-when:-The concentration of one of the reactants is doubled and the other reactants concentration remains the same and the overall rate of reaction does not change - reaction is zero orderwith respect to chemical which was doubled.The concentration of one of the reactants is doubled and other reactants concentration remains the same and the overall rate of reaction doubles - reaction is first order with respect to chemical which was doubled.The concentration of one of the reactants is doubled and other reactants concentration remains the same and the overall rate of reaction quadruples - reaction is second order with respect to chemical which was doubled.Zero Orderrate = kFirst Orderrate = k [A] (reaction is 1st order with respect to [A] and 1st order overall)Second Orderrate = k [A][B] (reaction is first order with respect to [A] and first order with respect to[B], reaction is second order overall)rate = k [A]2 (reaction is second order with respect to [A] and second order overall)Orders are simply added together in order to determine the overall order of reaction :-rate = k [A][B][C] would be third order overall and first order with respect to each of the reactantsThere are other orders of reaction, for example 2 and 3 quarter orders and third order reactions, but these are a little more complex.


How can one determine the order of reaction in a chemical reaction?

The order of a reaction can be determined by conducting experiments where the concentration of reactants is varied and the rate of the reaction is measured. By analyzing how changes in concentration affect the rate, one can determine the order of the reaction with respect to each reactant.


What is the order of the reaction with respect to clo2?

The order of a reaction with respect to ClO2 is determined by the exponent of ClO2 in the rate law expression. If the rate law is of the form rate = k[ClO2]^n, then the order with respect to ClO2 is n. This value can be determined experimentally by measuring how changes in the concentration of ClO2 affect the reaction rate. If the concentration of ClO2 does not appear in the rate law, then the order with respect to ClO2 is zero.


How can one determine the reaction order from concentration and time data?

To determine the reaction order from concentration and time data, one can use the method of initial rates. By comparing the initial rates of the reaction at different concentrations of reactants, the reaction order can be determined based on how the rate changes with respect to the concentration of each reactant.


How can one determine the order of reaction from a given table of data?

To determine the order of reaction from a given table of data, you can look at how the rate of the reaction changes with the concentration of the reactants. If the rate is directly proportional to the concentration of a reactant, the reaction is first order with respect to that reactant. If the rate is proportional to the square of the concentration, the reaction is second order. By analyzing the data and observing how the rate changes with different concentrations, you can determine the order of the reaction.


What is the relationship between concentration and reaction rate?

In general (but not always), the reaction rate will increase with increasing concentrations. If the reaction is zero order with respect to that substance, then the rate will not change.


If the order of a chemical reaction with respect to one of its reactants is zero how does that reactant's concentration affect the rate of the chemical reaction?

If the order of a reactant is zero, its concentration will not affect the rate of the reaction. This means that changes in the concentration of the reactant will not change the rate at which the reaction proceeds. The rate of the reaction will only be influenced by the factors affecting the overall rate law of the reaction.


How to calculate the reaction order from concentration and time?

To calculate the reaction order from concentration and time, you can use the integrated rate laws for different reaction orders. By plotting the concentration of the reactant versus time and determining the slope of the line, you can identify the reaction order. The reaction order can be 0, 1, or 2, depending on the relationship between concentration and time.


How is the effect of concentration changes on the reaction rate seen in the rate?

That depends on the order of the reaction. If the reaction is zero order with respect to a reactant, then changing the concentration will have no effect on rate. If it is first order, then doubling the concentration will double the rate. If it is second order, then doubling the concentration will quadruple the rate.