answersLogoWhite

0

In general (but not always), the reaction rate will increase with increasing concentrations. If the reaction is zero order with respect to that substance, then the rate will not change.

User Avatar

Eino Rolfson

Lvl 13
3y ago

What else can I help you with?

Continue Learning about Natural Sciences

What is the relationship between substrate concentration and enzyme activity?

At low substrate concentrations, the rate of enzyme activity is proportional to substrate concentration. The rate eventually reaches a maximum at high substrate concentrations as the active sites become saturated.


What is the effect on the rate of a chemical reaction when the concnetration of a reactant is decreased?

Decreasing the concentration of a reactant will typically decrease the rate of a chemical reaction, as there are fewer reactant molecules available to collide and form products. This is in line with the rate law, which often shows a direct relationship between reactant concentration and reaction rate.


How does the rate law show his concentration changes affect the rate of reaction?

The rate law expresses the relationship between the rate of a chemical reaction and the concentrations of the reactants. It is typically formulated as Rate = k[A]^m[B]^n, where k is the rate constant, [A] and [B] are the concentrations of the reactants, and m and n are the reaction orders which indicate how the rate changes with concentration. If the concentration of a reactant increases, the rate of reaction will typically increase as well, depending on its exponent in the rate law, reflecting the dependency of reaction kinetics on reactant concentrations. Thus, the rate law quantitatively describes how variations in concentration influence the speed of the reaction.


How does the rate law show how concentration changes affet the rate of reaction?

The rate law expresses the relationship between the rate of a chemical reaction and the concentrations of the reactants. It is typically formulated as Rate = k[A]^m[B]^n, where k is the rate constant, and m and n are the reaction orders for reactants A and B, respectively. The exponents indicate how the rate is affected by changes in concentration; for example, if m = 1, doubling the concentration of A will double the reaction rate, whereas if m = 2, the rate will quadruple. Thus, the rate law quantitatively illustrates how variations in reactant concentrations influence the overall reaction rate.


What effects does the concentration of reactions have on the rate of a reaction?

increasing the concentration increases the rate of the reaction

Related Questions

What can conclude about the relationship between the enzyme concentration and the reaction rate in the presence of excess molecules?

There is a direct relationship; as the enzyme concentration increases, the rate of reaction increases.


What is the relationship between the concentration of reactants and the rate of a second-order reaction as depicted on a graph?

In a second-order reaction, the rate of the reaction is directly proportional to the square of the concentration of the reactants. This relationship is depicted on a graph as a straight line with a positive slope, showing that as the concentration of the reactants increases, the rate of the reaction also increases.


What is the relationship between the rate law and zero order in a chemical reaction?

In a zero-order reaction, the rate of the reaction is independent of the concentration of the reactants. The rate law for a zero-order reaction is rate k, where k is the rate constant. This means that the rate of the reaction is constant and does not change with the concentration of the reactants.


What is the relationship between substrate concentration and enzyme activity?

At low substrate concentrations, the rate of enzyme activity is proportional to substrate concentration. The rate eventually reaches a maximum at high substrate concentrations as the active sites become saturated.


What can Tobin conclude about the relationship between the enzyme concentration and the reaction rate in the presence of excess substrate?

Tobin can conclude that the reaction rate is directly proportional to the enzyme concentration when excess substrate is present. This is because at higher enzyme concentrations, all substrate molecules are already bound to enzyme active sites, leading to a maximal reaction rate even with excess substrate.


How is the affect of concentration changes on the reaction rate seen in the rate law?

Changes in concentration affect the rate of the reaction as defined by the rate law equation. Increasing the concentration of reactants typically leads to an increase in the reaction rate since there are more reactant particles available to collide and form products. The rate law equation quantifies this relationship between concentration and reaction rate through the reaction order with respect to each reactant.


What does the enzyme activity curve reveal about the relationship between enzyme concentration and reaction rate?

The enzyme activity curve shows that as enzyme concentration increases, the reaction rate also increases. However, there is a point where adding more enzyme does not further increase the reaction rate, indicating that there is a limit to the effect of enzyme concentration on reaction rate.


How do concentrations affect rate according to the rate law?

The rate law describes the relationship between the concentration of reactants and the rate of a chemical reaction. Generally, an increase in the concentration of reactants will lead to a proportional increase in the reaction rate if the reaction is first order with respect to that reactant. For example, if the rate law is rate = k[A]^2, doubling the concentration of A would quadruple the reaction rate.


What is the effect on the rate of a chemical reaction when the concnetration of a reactant is decreased?

Decreasing the concentration of a reactant will typically decrease the rate of a chemical reaction, as there are fewer reactant molecules available to collide and form products. This is in line with the rate law, which often shows a direct relationship between reactant concentration and reaction rate.


Why photochemical reaction is zero order reaction?

Photochemical reactions often involve the absorption of photons to initiate the reaction, rather than the concentration of reactants. This means that the rate of the reaction is not dependent on the concentration of reactants, leading to a zero order relationship between reactant concentration and reaction rate.


Describe the relationship between substrate concentration and the initial reaction rate of an enzyme-catalyzed reaction Is this a linear relationship What happens to the initial reaction rate as sub?

As the substrate concentration increases so does the reaction rate because there is more substrate for the enzyme react with.


How does the rate law show his concentration changes affect the rate of reaction?

The rate law expresses the relationship between the rate of a chemical reaction and the concentrations of the reactants. It is typically formulated as Rate = k[A]^m[B]^n, where k is the rate constant, [A] and [B] are the concentrations of the reactants, and m and n are the reaction orders which indicate how the rate changes with concentration. If the concentration of a reactant increases, the rate of reaction will typically increase as well, depending on its exponent in the rate law, reflecting the dependency of reaction kinetics on reactant concentrations. Thus, the rate law quantitatively describes how variations in concentration influence the speed of the reaction.