The oxidation state of oxygen in the compound is -2.
The usual oxidation state for oxygen in a compound is -2.
Well, well, well, look who's curious about some chemistry! The oxidation state of oxygen in the OCl- compound is -1. Oxygen usually has an oxidation state of -2, but in this case, it's -1 because chlorine is more electronegative and steals some of oxygen's electrons. So, there you have it - oxygen in OCl- has an oxidation state of -1.
The oxidation state of Mo in MoO4 is +6. This is because each oxygen atom has an oxidation state of -2, and since there are four oxygen atoms in the compound, the total oxidation state contributed by oxygen is -8. In order to balance the charge of the compound, the oxidation state of Mo must be +6.
In K2MnO4, the oxidation state of oxygen is -2, and the overall charge of the compound is -1. Given that potassium has a +1 oxidation state, the oxidation state of manganese (Mn) in this compound is +7.
The oxidation state of Cl in ClO2 is +3. This is determined by assigning oxygen an oxidation state of -2 and knowing that the overall charge of the compound is 0. Since there are two oxygen atoms with an oxidation state of -2 each, the oxidation state of Cl must be +3 to balance it out.
The usual oxidation state for oxygen in a compound is -2.
Well, well, well, look who's curious about some chemistry! The oxidation state of oxygen in the OCl- compound is -1. Oxygen usually has an oxidation state of -2, but in this case, it's -1 because chlorine is more electronegative and steals some of oxygen's electrons. So, there you have it - oxygen in OCl- has an oxidation state of -1.
The oxidation state of Mo in MoO4 is +6. This is because each oxygen atom has an oxidation state of -2, and since there are four oxygen atoms in the compound, the total oxidation state contributed by oxygen is -8. In order to balance the charge of the compound, the oxidation state of Mo must be +6.
The oxidation state of oxygen in O2PtF6 is zero. In a molecule of O2, the oxidation state of each oxygen atom is -2. Additionally, the compound PtF6 has a +6 charge, so the two oxygen atoms in O2PtF6 must have an oxidation state of zero to balance the overall charge of the compound.
In K2MnO4, the oxidation state of oxygen is -2, and the overall charge of the compound is -1. Given that potassium has a +1 oxidation state, the oxidation state of manganese (Mn) in this compound is +7.
The hydrogen atoms are each in the 1+ oxidation state. The oxygen is in it's 2- oxidation state.
The compound FeO is formed by two different elements: iron (Fe) and oxygen (O). In this compound, iron has a +2 oxidation state, while oxygen has a -2 oxidation state, resulting in a neutral compound.
The oxidation state of Cl in ClO2 is +3. This is determined by assigning oxygen an oxidation state of -2 and knowing that the overall charge of the compound is 0. Since there are two oxygen atoms with an oxidation state of -2 each, the oxidation state of Cl must be +3 to balance it out.
The oxidation state of oxygen in alkaline earth metal oxides is -2. Alkaline earth metals always have a +2 oxidation state, which means oxygen has to have a -2 oxidation state to balance the charges in the compound.
The oxidation state of nitrogen in LiNO3 is +5. This is because the sum of the oxidation states of all atoms in the compound must equal the charge of the compound, and lithium is always +1 and oxygen is always -2.
The oxidation state of chromium (Cr) in Ag2Cr2O7 is +6. This is because the total charge of the compound is zero, and the oxidation states of silver (Ag) and oxygen (O) are fixed. By assigning an oxidation state of +6 to oxygen, we can determine that chromium is in the +6 oxidation state.
In Na2SO4, the oxidation state of sodium (Na) is +1, the oxidation state of sulfur (S) is +6, and the oxidation state of oxygen (O) is -2. To calculate the oxidation state of the whole compound, you can use the rule that the sum of the oxidation states in a neutral compound is zero, so in this case it would be +1*2 + (-2)*4 = 0.