Changing the temperature
For delta G to become negative at a given enthalpy and entropy, the process must be spontaneous. This can happen when the increase in entropy is large enough to overcome the positive enthalpy, leading to a negative overall Gibbs free energy. This typically occurs at higher temperatures where entropy effects dominate.
Order or organization could be considered antonyms of entropy. Entropy refers to a state of disorder or randomness, so its opposite would imply a state of structure or coherence.
A high temperature could make a reaction spontaneous that was nonspontaneous at low temperature when the increase in entropy due to the reaction outweighs the increase in enthalpy. At higher temperatures, the TΔS term in the Gibbs free energy equation becomes more dominant, leading to a positive ΔG becoming negative, thus making the reaction spontaneous.
First of all, entropy is the defined as the extent to which something is disordered. In chemistry, for entropy in a SYSTEM to decrease, the products of a reaction must be less disordered than the reactants. The extent of "disordered-ness" can be seen by the physical states of the substances. A gas is more disordered than a liquid, which is more disordered than a solid. So, an example of a reaction that leads to a decrease in entropy is: HCl(gas) +NH3(gas) -----> NH4Cl(solid) So you see, there are more gaseous molecules in the reactant side of the equation than in the product side, which means the products are less disordered than the reactants. ----------------------------------------------- However, one must note that if the entropy of a system(reaction) decreases, the entropy of the surroundings should increase. This is because change in TOTAL entropy(A) = change in entropy of SYSTEM(B) + change in entropy of SURROUNDINGS(C). It is a rule that A must increase in every case ( have a positive value). If the B is negative(a decrease in entropy), C must be positive(an increase in entropy) to keep the value of A positive.
The products becoming more ordered than the reactants
For delta G to become negative at a given enthalpy and entropy, the process must be spontaneous. This can happen when the increase in entropy is large enough to overcome the positive enthalpy, leading to a negative overall Gibbs free energy. This typically occurs at higher temperatures where entropy effects dominate.
The equation for ∆G is ∆G = ∆H - T∆S H is enthalpy and S is entropySo, ∆G is negative if T∆S is greater than ∆H
Changing the temperature. my only explanation is I got it right so I hope this helps.
A reaction that is nonspontaneous at low temperatures can become spontaneous at high temperatures if the entropy change (ΔS) is positive and the enthalpy change (ΔH) is either positive or less negative. In the Gibbs free energy equation (G = H - TS), as temperature (T) increases, the term -TS becomes more negative, which can lower the Gibbs free energy (G). If the increase in entropy at high temperatures outweighs the enthalpic costs, G can turn negative, indicating spontaneity.
An endothermic reaction with a decrease in entropy may still occur spontaneously under certain conditions, particularly at high temperatures. Spontaneity is determined by the Gibbs free energy change (( \Delta G )), which combines enthalpy and entropy changes (( \Delta G = \Delta H - T \Delta S )). If the negative contribution from ( T \Delta S ) (where ( \Delta S ) is negative) is outweighed by a sufficiently large positive ( \Delta H ), the reaction may not be spontaneous. However, at lower temperatures, the reverse can be true, and such a reaction could be spontaneous.
Order or organization could be considered antonyms of entropy. Entropy refers to a state of disorder or randomness, so its opposite would imply a state of structure or coherence.
In the Gibbs free energy equation ( G = H - TS ), a reaction can become spontaneous at high temperatures if the entropy change (( \Delta S )) is positive and the enthalpy change (( \Delta H )) is either positive or less negative. As the temperature (( T )) increases, the ( -TS ) term becomes more significant, potentially outweighing a positive ( \Delta H ) and resulting in a negative ( \Delta G ). This indicates that at sufficiently high temperatures, the increased disorder associated with the reaction can drive the process forward, making it spontaneous.
They could be used for making science test or other things, per example: Many chemical reactions release energy in the form of heat, light, or sound. These are exothermic reactions. Exothermic reactions may occur spontaneously and result in higher randomness or entropy (ΔS > 0) of the system. They are denoted by a negative heat flow (heat is lost to the surroundings) and decrease in enthalpy (ΔH < 0). In the lab, exothermic reactions produce heat or may even be explosive.
A high temperature could make a reaction spontaneous that was nonspontaneous at low temperature when the increase in entropy due to the reaction outweighs the increase in enthalpy. At higher temperatures, the TΔS term in the Gibbs free energy equation becomes more dominant, leading to a positive ΔG becoming negative, thus making the reaction spontaneous.
You cannot reduce entropy because entropy increases (Second Law of Thermodynamics), if you could, we could have perpetual motion. When work is achieved energy is lost to heat. The only way to decrease the entropy of a system is to increase the entropy of another system.
First of all, entropy is the defined as the extent to which something is disordered. In chemistry, for entropy in a SYSTEM to decrease, the products of a reaction must be less disordered than the reactants. The extent of "disordered-ness" can be seen by the physical states of the substances. A gas is more disordered than a liquid, which is more disordered than a solid. So, an example of a reaction that leads to a decrease in entropy is: HCl(gas) +NH3(gas) -----> NH4Cl(solid) So you see, there are more gaseous molecules in the reactant side of the equation than in the product side, which means the products are less disordered than the reactants. ----------------------------------------------- However, one must note that if the entropy of a system(reaction) decreases, the entropy of the surroundings should increase. This is because change in TOTAL entropy(A) = change in entropy of SYSTEM(B) + change in entropy of SURROUNDINGS(C). It is a rule that A must increase in every case ( have a positive value). If the B is negative(a decrease in entropy), C must be positive(an increase in entropy) to keep the value of A positive.
A high temperature can make a reaction that is non-spontaneous at low temperatures spontaneous if the reaction has a positive entropy change (ΔS > 0) and a negative enthalpy change (ΔH < 0). According to the Gibbs free energy equation (ΔG = ΔH - TΔS), increasing the temperature (T) can make the term -TΔS more significant, potentially turning ΔG negative and indicating spontaneity. This is particularly relevant for reactions that are endothermic (positive ΔH) but have a large increase in disorder.