answersLogoWhite

0

4.25 10-19 j

User Avatar

Wiki User

9y ago

What else can I help you with?

Continue Learning about Chemistry

Whenever an excited hydrogen atom falls back from an excited state to its ground state it?

emits a photon with a specific energy corresponding to the difference in energy levels between the excited state and the ground state. This emitted photon can be in the form of visible light, ultraviolet light, or infrared light depending on the specific energy transition. This process is known as emission spectroscopy and is used to identify elements based on the unique energy levels of their electron configurations.


Can A photon of low frequency light has more energy than a photon of high frequency light?

Yes. The energy is given by plank's constant times the frequencie of the photon (remember that light is both particle and wave). So since blue light has higher frequency than green light, it is more energetic.


What is the energy of a photon of yellow light that has a frequency of 5.451014 Hz?

The energy of a photon can be calculated using the formula: E = hf, where E is the energy, h is Planck's constant (6.626 x 10^-34 J s), and f is the frequency. Plugging in the values, the energy of a photon of yellow light with a frequency of 5.45 x 10^14 Hz would be approximately 3.6 x 10^-19 Joules.


What change occurs with the atom when it is emitting light?

When an atom emits light, an electron in the atom transitions from a higher energy state to a lower energy state. This transition releases energy in the form of a photon of light. The atom remains the same element before and after emitting light.


What happens to excess energy when the electron jumps from a higher energy orbit to a lower energy orbit in the hydrogen atom?

The electron emits a photon of light which we can see in a spectrograph as color. Four colors are normally seen in a hydrogen atom subjected to energy.

Related Questions

What is the energy of a photon the emits a light of frequency 6.42 1014 Hz?

4.25 10-19 j


What is the energy of a photon that emits a light of frequency 4.471014?

The energy of a photon is given by E=hf, where h is Planck's constant (6.626 x 10^-34 J*s) and f is the frequency of light. Thus, the energy of the photon emitting light of frequency 4.471014 Hz is approximately 2.97 x 10^-33 Joules.


What is the energy of a photon that emits a light of frequency 4.47X 1014 Hz?

2.96 x 10^-19 J


What is the energy of a photon that emits a light of frequency 6.421014 Hz?

The energy of a photon is given by E = hf, where h is the Planck's constant (6.626 x 10^-34 J.s) and f is the frequency of the light. Substituting the values, the energy of the photon emitting light of frequency 6.421014 Hz would be approximately 4.25 x 10^-33 Joules.


What is the energy of a photon that emits a light of frequency energy 7.211014 Hz?

The energy of a photon is given by E = hf, where h is Planck's constant (6.626 x 10^-34 J.s) and f is the frequency of the light. Substituting the given frequency of 7.211014 Hz into the equation, we find that the energy of the photon is approximately 4.79 x 10^-33 J.


What is the energy of a photon that emits a light of frequency 4.47 x 1014 Hz?

2.96 x 10-19 J


What is the energy of a photon that emits a light of freqeuncy7.21x1014hz?

The energy of a photon is given by the equation E = hf, where E is the energy, h is Planck's constant (6.63x10^-34 J-s), and f is the frequency of the light. Plugging in the values, the energy of the photon is approximately 4.78x10^-19 joules.


What is the energy in a photon of light proportional to?

The amount of energy in a photon of light is proportional to the frequency of the corresponding light wave.... frequency of the electromagnetic radiation of which the photon is a particle.


How does a photon of yellow light and a photon of violet light compare in energy?

A photon of violet light has higher energy than a photon of yellow light. This is because violet light has a higher frequency and shorter wavelength compared to yellow light. The energy of a photon is directly proportional to its frequency, according to the equation E=hf, where E is energy, h is Planck's constant, and f is frequency.


Which is more energetic a red photon or a blue photon?

The energy of a photon is inversely propotional to its wavelength. The wavelength of a blue photon is less than that of a red photon. That makes the blue photon more energetic. Or how about this? The energy of a photon is directly proportional to its frequency. The frequency of a blue photon is greater than that of a red photon. That makes the blue photon more energetic. The wavelength of a photon is inversely proportional to its frequency. The the longer the wavelength, the lower the frequency. The shorter the wavelength, the higher the frequency.


What is the energy of a photon that emits a light frequency of 7.21 x 1014 Hz?

The energy of a photon can be calculated using the formula E = hf, where E is the energy, h is Planck's constant (6.626 x 10^-34 J.s), and f is the frequency of the light. Plugging in the values, the energy of a photon emitting a light frequency of 7.21 x 10^14 Hz is approximately 4.85 x 10^-19 J.


What is the energy of photon that emits a light of frequency (4.47)(10 exponent 14) Hz?

The energy is 2,9619.e-19 J.