answersLogoWhite

0

The amount of energy in a photon of light is proportional to the frequency of the corresponding light wave.
... frequency of the electromagnetic radiation of which the photon is a particle.

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Physics

Which is more energetic a red photon or a blue photon?

The energy of a photon is inversely propotional to its wavelength. The wavelength of a blue photon is less than that of a red photon. That makes the blue photon more energetic. Or how about this? The energy of a photon is directly proportional to its frequency. The frequency of a blue photon is greater than that of a red photon. That makes the blue photon more energetic. The wavelength of a photon is inversely proportional to its frequency. The the longer the wavelength, the lower the frequency. The shorter the wavelength, the higher the frequency.


How does a photon of yellow light and a photon of violet light compare in energy?

A photon of violet light has higher energy than a photon of yellow light. This is because violet light has a higher frequency and shorter wavelength compared to yellow light. The energy of a photon is directly proportional to its frequency, according to the equation E=hf, where E is energy, h is Planck's constant, and f is frequency.


Is photon energy the same for all wavelengths of light?

No, photon energy is not the same for all wavelengths of light. The energy of a photon is directly proportional to its frequency, so different wavelengths of light can have different photon energies. Shorter wavelengths of light have higher energy photons, while longer wavelengths have lower energy photons.


What is the relationship between wavelength of light and the quantity of energy per photon?

The relationship between wavelength and energy per photon is inverse: shorter wavelengths correspond to higher energy photons, according to the equation E = hc/λ, where E is energy, h is Planck's constant, c is the speed of light, and λ is wavelength.


Is energy of light directly proportional to frequency?

Yes, the energy of light is directly proportional to its frequency. This relationship is described by Planck's equation, E=hf, where E is the energy of a photon of light, h is Planck's constant, and f is the frequency of the light.

Related Questions

Which is more energetic a red photon or a blue photon?

The energy of a photon is inversely propotional to its wavelength. The wavelength of a blue photon is less than that of a red photon. That makes the blue photon more energetic. Or how about this? The energy of a photon is directly proportional to its frequency. The frequency of a blue photon is greater than that of a red photon. That makes the blue photon more energetic. The wavelength of a photon is inversely proportional to its frequency. The the longer the wavelength, the lower the frequency. The shorter the wavelength, the higher the frequency.


How does a photon of yellow light and a photon of violet light compare in energy?

A photon of violet light has higher energy than a photon of yellow light. This is because violet light has a higher frequency and shorter wavelength compared to yellow light. The energy of a photon is directly proportional to its frequency, according to the equation E=hf, where E is energy, h is Planck's constant, and f is frequency.


Is photon energy the same for all wavelengths of light?

No, photon energy is not the same for all wavelengths of light. The energy of a photon is directly proportional to its frequency, so different wavelengths of light can have different photon energies. Shorter wavelengths of light have higher energy photons, while longer wavelengths have lower energy photons.


What is the relationship between wavelength of light and the quantity of energy per photon?

The relationship between wavelength and energy per photon is inverse: shorter wavelengths correspond to higher energy photons, according to the equation E = hc/λ, where E is energy, h is Planck's constant, c is the speed of light, and λ is wavelength.


When the light is bluer the each photons contains?

When light is bluer, it means it has a higher frequency. Each photon carries energy, and the energy of a photon is directly proportional to its frequency. Therefore, in bluer light, each photon contains higher energy compared to redder light.


Is energy of light directly proportional to frequency?

Yes, the energy of light is directly proportional to its frequency. This relationship is described by Planck's equation, E=hf, where E is the energy of a photon of light, h is Planck's constant, and f is the frequency of the light.


What is a photon-?

A particle of light. Or, in general, of an electromagnetic wave.


How does photon energy change with wavelength?

The energy of a photon is inversely proportional to its wavelength. This means that as the wavelength increases, the energy of the photon decreases. Conversely, as the wavelength decreases, the energy of the photon increases.


How is the wavenumber related to the energy of a photon?

The wavenumber of a photon is inversely proportional to its energy. This means that as the wavenumber increases, the energy of the photon decreases, and vice versa.


What is the energy of one photon and how does it relate to the behavior of light?

The energy of one photon is directly proportional to its frequency. This relationship is described by Planck's equation: E hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. The behavior of light, including its interactions with matter and its wave-particle duality, is influenced by the energy of its constituent photons.


What color is visible light sprectrum has the most energy per photon?

A photon's energy is directly proportional to its frequency (inversely proportional to its wavelength).In any given interval of the spectrum, the highest frequency (shortest wavelength) carries the most energy.For visible light, that corresponds to the violet end of the 'rainbow'. The last color your eyes can perceiveat that end is the color with the most energy per photon.


How is the frequency relate to energy of colors of light?

The energy of a single photon is directly proportional to its frequency.Specifically, E=hf, where h is the Planck constant.