answersLogoWhite

0

The energy of a photon is inversely proportional to its wavelength. This means that as the wavelength increases, the energy of the photon decreases. Conversely, as the wavelength decreases, the energy of the photon increases.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Related Questions

What is the wavelength of a photon whose energy is twice that of a photon with a 580 nm wavelength?

Since the energy of a photon is inversely proportional to its wavelength, for a photon with double the energy of a 580 nm photon, its wavelength would be half that of the 580 nm photon. Therefore, the wavelength of the photon with twice the energy would be 290 nm.


What occurs as the wavelength of a photon increases?

As the wavelength of a photon increases, its frequency decreases. This means the energy of the photon decreases as well, since photon energy is inversely proportional to its wavelength.


A change in wavelength produces what change on light?

Frequency, color, energy in each photon.


A photon has an energy of 1.94 1013 J What is the photon's wavelength?

To find the wavelength of the photon, you can use the formula: wavelength = (Planck's constant) / (photon energy). Substituting the values, the wavelength is approximately 1.024 x 10^-7 meters.


When an electron in atom changes energy states a photon is emitted If the photon has a wavelength of 550 nm how did the energy of the electron change?

The energy of the electron decreased as it moved to a lower energy state, emitting a photon with a wavelength of 550 nm. This decrease in energy corresponds to the difference in energy levels between the initial and final states of the electron transition. The energy of the photon is inversely proportional to its wavelength, so a longer wavelength photon corresponds to lower energy.


Does photon of 420nm contain more energy than a photon of 790nm?

Yes, a photon with a wavelength of 420nm contains more energy than a photon with a wavelength of 790nm. This is because energy is inversely proportional to wavelength, meaning shorter wavelengths have higher energy.


How do you calculate photon wavelength with only the energy of the photons?

Photon Energy E=hf = hc/w thus wavelength w= hc/E or the wavelength is hc divided by the energy of the photon or w= .2 e-24 Joule meter/Photon Energy.


A photon of wavelength 3000 A is absorbed by a gas and remitted as two photons One of the photons is red 7600 A What is the wavelength of the other photon?

The total energy of a photon with a wavelength of 3000 A is divided into two photons, one red photon with a wavelength of 7600 A, and another photon with a shorter wavelength. To calculate the wavelength of the second photon, you can use the conservation of energy principle, where the sum of the energies of the two new photons is equal to the energy of the original photon. This will give you the wavelength of the other photon.


What is the wavelength of the photon that has been released in Part B?

The wavelength of a photon can be calculated using the equation: wavelength = Planck's constant / photon energy. Given the photon energy, you can plug in the values to find the corresponding wavelength.


What is the energy of a photon with a wavelength of 500 nm in kilo electron volts (keV)?

The energy of a photon with a wavelength of 500 nm is approximately 2.48 keV.


Which is more energetic a red photon or a blue photon?

The energy of a photon is inversely propotional to its wavelength. The wavelength of a blue photon is less than that of a red photon. That makes the blue photon more energetic. Or how about this? The energy of a photon is directly proportional to its frequency. The frequency of a blue photon is greater than that of a red photon. That makes the blue photon more energetic. The wavelength of a photon is inversely proportional to its frequency. The the longer the wavelength, the lower the frequency. The shorter the wavelength, the higher the frequency.


What is the wavelength of a photon that has three times as much energy as that of a photon whose wavelength is 779 nm?

Photon energy is proportional to frequency ==> inversely proportional to wavelength.3 times the energy ==> 1/3 times the wavelength = 779/3 = 2592/3 nm