False
Yes, all wavelengths of electromagnetic radiation, including visible light, radio waves, and X-rays, travel at the same speed in a vacuum, which is the speed of light (~3.00 x 10^8 m/s). However, different wavelengths carry different amounts of energy per photon, with shorter wavelengths (like gamma rays) carrying more energy per photon than longer wavelengths (like radio waves).
No, it could not. A blue photon carries more energy than a red photon, since the blue photon's frequency is higher. That means one red photon wouldn't deliver enough energy to the atom to give it the energy to emit a blue photon.
The frequency of re-emitted light in a transparent material is the same as the frequency of the light that stimulates its re-emission. This is due to the conservation of energy principle, where the energy of the absorbed photon is re-emitted as a photon of the same frequency.
Visible light and radio waves are both two types of the same radiation (electromagnetic waves). The difference is that visible light has a higher frequency; a higher energy per photon; and a smaller wavelength.
No, wavelengths in the electromagnetic spectrum do not each have the same amount of energy. The energy of a wave is directly proportional to its frequency, so shorter wavelengths (higher frequency) have more energy than longer wavelengths (lower frequency).
Yes, all wavelengths of electromagnetic radiation, including visible light, radio waves, and X-rays, travel at the same speed in a vacuum, which is the speed of light (~3.00 x 10^8 m/s). However, different wavelengths carry different amounts of energy per photon, with shorter wavelengths (like gamma rays) carrying more energy per photon than longer wavelengths (like radio waves).
If the color (frequency, wavelength) of each is the same, then each photon carries the same amount of energy. Three of them carry three times the energy that one of them carries.
False
no
No, it could not. A blue photon carries more energy than a red photon, since the blue photon's frequency is higher. That means one red photon wouldn't deliver enough energy to the atom to give it the energy to emit a blue photon.
No. A proton is a part of an atom, while a photon is a tiny bundle of light energy (or light particle).
The energy of the photon is the same as the energy lost by the electron
When an atom emits light, an electron in the atom transitions from a higher energy state to a lower energy state. This transition releases energy in the form of a photon of light. The atom remains the same element before and after emitting light.
The frequency of re-emitted light in a transparent material is the same as the frequency of the light that stimulates its re-emission. This is due to the conservation of energy principle, where the energy of the absorbed photon is re-emitted as a photon of the same frequency.
This is a tricky question because there is more than one form of energy in light. There is the energy that each particle of light (the photon) has and there is group energy which is the sum total of all the photon energy as they travel as a group (like in a laser beam). But the good news is that the answer is FALSE for both the photon and group energies. Photon energy depends on the photon fundamental frequency. And the higher the energy the bluer the color, which can run from red to violet. Those photons in the violet color have higher energy than photons in the red color frequency. And group energy is just the sum of all the photon energies in a group, like a light beam from your flashlight (aka, torch). So for a given mix of photons, the more photons in the group the higher is the group energy level. What we call light intensity (e.g., bright or dim) depends on the group energy with high energy equating to high intensity.
The absorption spectrum of an element features lines at the same wavelengths as its emission spectrum because both processes involve the same energy transitions between electron energy levels. When an electron absorbs energy, it moves to a higher energy level, resulting in the absorption of specific wavelengths of light. Conversely, when an electron falls back to a lower energy level, it releases energy in the form of light at those same wavelengths. This correspondence between absorbed and emitted wavelengths is a fundamental characteristic of atomic structure.
No, all photons have the same mass. Photons are massless (i.e. zero). All the energy in a photon is in its momentum, but increasing its momentum does not change it speed which is always "the speed of light". All massless particles always move at the speed of light.