These are polar forces, intermolecular forces of attraction between molecules.
The reason ch3br or ch3f have higher boiling points compared to other compounds is because they have stronger intermolecular forces due to the presence of hydrogen bonding.
The prominent intermolecular force for this compound would be dipole dipole attraction forces since there is a polar C-F bond in each molecule. As there is many C-H bonds present, there would be London forces among those groups.
The relative strength of intermolecular forces depends on the types of molecules involved. Compounds with hydrogen bonding, such as water, tend to have stronger intermolecular forces compared to those with only London dispersion forces, like diethyl ether. This results in higher boiling points for compounds with stronger intermolecular forces.
London forces are present in chlorine molecules.
The strength of intermolecular forces is directly related to the boiling point of a substance. Substances with stronger intermolecular forces require more energy to break those forces, leading to a higher boiling point. Conversely, substances with weaker intermolecular forces have lower boiling points.
The reason ch3br or ch3f have higher boiling points compared to other compounds is because they have stronger intermolecular forces due to the presence of hydrogen bonding.
The prominent intermolecular force for this compound would be dipole dipole attraction forces since there is a polar C-F bond in each molecule. As there is many C-H bonds present, there would be London forces among those groups.
Metahne does not have a higher boiling point than methane. Fluoromethane, CH3F, has a boiling point of 195K, -78.2C, methane, CH4, has a boiling point of 109K approx -164 C. I make that fluoromethane has a higher temeprature boiling point than methane. This is what you would expect, London dispersion forces will be greater in CH3F as it has more electrons than CH4. CH3F is polar and there will be dipole dipole interactions which will not be present in CH4.
Intramolecular forces are not intermolecular forces !
The intermolecular forces are hydrogen bonding.
When there is more thermal energy, then there are less intermolecular forces.
The relative strength of intermolecular forces depends on the types of molecules involved. Compounds with hydrogen bonding, such as water, tend to have stronger intermolecular forces compared to those with only London dispersion forces, like diethyl ether. This results in higher boiling points for compounds with stronger intermolecular forces.
London forces are present in chlorine molecules.
The strength of intermolecular forces is directly related to the boiling point of a substance. Substances with stronger intermolecular forces require more energy to break those forces, leading to a higher boiling point. Conversely, substances with weaker intermolecular forces have lower boiling points.
No, strong intermolecular forces typically have negative values when expressed numerically in terms of energy or potential energy. The more negative the value, the stronger the intermolecular forces.
The intermolecular forces in pentane are London dispersion forces. These forces result from the temporary uneven distribution of electrons in the molecule, leading to temporary dipoles. Due to the nonpolar nature of pentane, London dispersion forces are the predominant intermolecular forces present.
London dispersion forces