28.01g/mol
To determine the number of molecules in 140g of nitrogen gas, you first need to convert the mass of nitrogen gas to moles using its molar mass. The molar mass of nitrogen gas (N2) is 28 g/mol. Once you have the number of moles of nitrogen gas, you can use Avogadro's number (6.022 x 10^23 molecules/mol) to calculate the number of molecules present in 140g of nitrogen gas.
To find the number of moles of CO molecules in 52g of CO, we first need to determine the molar mass of CO, which is approximately 28 g/mol. Then, we divide the given mass by the molar mass to get the number of moles. So, 52g of CO is equivalent to approximately 1.86 moles of CO molecules.
1 mole contains 6.022 x 1023 molecules. number of moles of CO= (4.65 x 1024) / (6.022 x 1023) = 7.72 mol The identity of the molecule does not change the answer.
To calculate the number of CO molecules, first convert the temperature to Kelvin (18°C + 273 = 291K). Then, use the ideal gas law equation PV = nRT to find the number of moles of CO present. Finally, since 1 mole of a gas contains 6.022 x 10^23 molecules, you can convert the moles of CO to molecules.
To calculate the oxidation number of Co(NH3)6, first identify the oxidation number of ammonia (NH3), which is -3. Since there are six ammonia molecules surrounding the cobalt (Co) atom, the total charge contributed by the ammonia ligands is -3 x 6 = -18. Since the overall charge of the complex is usually 0, the oxidation state of cobalt (Co) in this complex is +3 to balance the charge.
The number of molecules of 140g of CO is 3.01x10^24 molecules of CO. CO is Carbon monoxide, with the mono meaning one. It's molar mass is 28.01 g/mol.
To find the number of molecules in 140 g of CO (carbon monoxide), you first need to determine the number of moles of CO. The molar mass of CO is 28 g/mol. Divide the given mass by the molar mass to get the number of moles, then use Avogadro's number (6.022 x 10^23 molecules/mol) to convert moles to molecules.
To determine the number of molecules in 140g of nitrogen gas, you first need to convert the mass of nitrogen gas to moles using its molar mass. The molar mass of nitrogen gas (N2) is 28 g/mol. Once you have the number of moles of nitrogen gas, you can use Avogadro's number (6.022 x 10^23 molecules/mol) to calculate the number of molecules present in 140g of nitrogen gas.
To find the number of moles of CO molecules in 52g of CO, we first need to determine the molar mass of CO, which is approximately 28 g/mol. Then, we divide the given mass by the molar mass to get the number of moles. So, 52g of CO is equivalent to approximately 1.86 moles of CO molecules.
To find the number of moles of CO molecules, divide the given number of molecules by Avogadro's number. Avogadro's number is about 6.022 x 10^23 molecules/mol. Therefore, 7.20 x 10^27 molecules of CO corresponds to 12 moles (7.20 x 10^27 / 6.022 x 10^23).
Yes.
To find the number of molecules of carbon monoxide in 3.69 grams, first calculate the number of moles using the molar mass of carbon monoxide (28.01 g/mol). Next, use Avogadro's number to determine the number of molecules in those moles of carbon monoxide.
1 mole contains 6.022 x 1023 molecules. number of moles of CO= (4.65 x 1024) / (6.022 x 1023) = 7.72 mol The identity of the molecule does not change the answer.
To calculate the number of CO molecules, first convert the temperature to Kelvin (18°C + 273 = 291K). Then, use the ideal gas law equation PV = nRT to find the number of moles of CO present. Finally, since 1 mole of a gas contains 6.022 x 10^23 molecules, you can convert the moles of CO to molecules.
There is one CO molecule in one mole of CO. This is because Avogadro's number, 6.022 x 10^23, represents the number of particles in one mole of a substance, and in this case, CO refers to one molecule of carbon monoxide.
That is 226.796 gm
Any adult human being, on the surface of the Earth, weighs much more than 140g, which is less than a third of a pound. So if your weight is 140g, possibly you are in the International Space Station, or possibly you are an embryo. Very few questions on this site are actually posed by embryos.