Sodium is always 1+, oxygen in this case is 2-. The sum of all of these atoms' oxidation numbers is -4. Therefore, since the compound in neutral carbon must have a +4 oxidation number.
Alkali metals such as sodium always form univalent cations in ionic compounds, and oxygen in oxyanions is assigned an oxidation number of -2. Therefore, to achieve electrical neutrality in Na2CO3, carbon must have an oxidation number of +4.
The oxidation number of carbon in K2CO3 is +4. This is because the oxidation number of potassium (K) is +1 and the oxidation number of oxygen (O) is -2, which allows for the calculation of carbon's oxidation number.
The oxidation number of sodium (Na) in sodium carbonate (Na2CO3) is +1. The oxidation number of oxygen (O) is -2, and the oxidation number of carbon (C) is +4. Therefore, the overall compound has a charge of 0.
The oxidation number for carbon in CHI3 compound is -2. In CHI3, iodine has an oxidation number of -1 and hydrogen has an oxidation number of +1, which allows carbon to have an oxidation number of -2 to balance the overall charge of the compound.
The oxidation number for carbon in C2H6O is -3. This is calculated by assigning hydrogen an oxidation number of +1 and oxygen an oxidation number of -2, then applying algebra to determine the oxidation number of carbon.
Alkali metals such as sodium always form univalent cations in ionic compounds, and oxygen in oxyanions is assigned an oxidation number of -2. Therefore, to achieve electrical neutrality in Na2CO3, carbon must have an oxidation number of +4.
The oxidation number of carbon in K2CO3 is +4. This is because the oxidation number of potassium (K) is +1 and the oxidation number of oxygen (O) is -2, which allows for the calculation of carbon's oxidation number.
The oxidation number of sodium (Na) in sodium carbonate (Na2CO3) is +1. The oxidation number of oxygen (O) is -2, and the oxidation number of carbon (C) is +4. Therefore, the overall compound has a charge of 0.
The oxidation number for carbon in CHI3 compound is -2. In CHI3, iodine has an oxidation number of -1 and hydrogen has an oxidation number of +1, which allows carbon to have an oxidation number of -2 to balance the overall charge of the compound.
The oxidation number for carbon in C2H6O is -3. This is calculated by assigning hydrogen an oxidation number of +1 and oxygen an oxidation number of -2, then applying algebra to determine the oxidation number of carbon.
The oxidation number of carbon in formaldehyde (HCHO) is +2. In this molecule, oxygen has an oxidation number of -2, and hydrogen has an oxidation number of +1. By applying the rules for assigning oxidation numbers in a compound, we can determine that carbon has an oxidation number of +2.
The oxidation number of carbon in CH3OH is -2. This is because hydrogen has an oxidation number of +1 and oxygen has an oxidation number of -2. By assigning these values to the other atoms in the molecule, we can determine that carbon must have an oxidation number of -2 to balance the overall charge of the molecule.
H is +1, O is -2 overall carbon will have an oxidation # of -3
The oxidation number of carbon in CO is +2. This is because the oxidation number of oxygen is typically -2, and there is only one oxygen atom in CO, so the oxidation number of carbon must be +2 to balance the charge.
The oxidation number of each hydrogen in H2CO2 is +1, while the oxidation number of each carbon in CO2 is +4. This is because hydrogen usually has an oxidation number of +1, and oxygen usually has an oxidation number of -2.
Hydronium ion is H3O+ ion and has no carbon in it.
The highest oxidation number for carbon is +4, which is found in compounds such as carbon tetrachloride (CCl4) and carbon dioxide (CO2).