Ca + 2 H2O ------> Ca(OH)2 + H2 so 2 moles of calcium react with 4 moles of water.
The balanced equation for the reaction is: 3H2 + N2 -> 2NH3 From the balanced equation, we can see that 3 moles of hydrogen are needed to react completely with 1 mole of nitrogen. So if there are 3 moles of nitrogen, you would need 9 moles of hydrogen to react completely.
Since molecules of potassium contain only single potassium atoms, molecules of iodine contain two atoms, and moles of potassium iodide contain one atom of each element, 2.5 moles of iodine are needed to react completely with 5 moles of potassium.
How many moles of C are needed to react with 0.490 mole SO2?
The balanced chemical equation for the reaction between hydrogen and oxygen is: 2H2 + O2 -> 2H2O This equation shows that 1 mole of O2 reacts with 2 moles of H2. So, to completely react with 6 moles of H2, you would need 3 moles of O2.
For the reaction of propane (C3H8) with oxygen (O2), the balanced equation is: C3H8 + 5O2 -> 3CO2 + 4H2O. This means that 5 moles of O2 are required to react completely with 1 mole of propane (C3H8). Therefore, to react completely with 4 moles of propane, you would need 20 moles of O2.
The balanced equation for the reaction is: 3H2 + N2 -> 2NH3 From the balanced equation, we can see that 3 moles of hydrogen are needed to react completely with 1 mole of nitrogen. So if there are 3 moles of nitrogen, you would need 9 moles of hydrogen to react completely.
Since molecules of potassium contain only single potassium atoms, molecules of iodine contain two atoms, and moles of potassium iodide contain one atom of each element, 2.5 moles of iodine are needed to react completely with 5 moles of potassium.
If 2 moles of Na2CrO4 react completely, they will form the same number of moles of NaCl. This is because the mole ratio between Na2CrO4 and NaCl is 1:2. Therefore, 2 moles of Na2CrO4 will form 2 moles of NaCl.
How many moles of C are needed to react with 0.490 mole SO2?
10 moles of nitrogen dioxide are needed to react with 5,0 moles of water.
The balanced chemical equation for the reaction between hydrogen and oxygen is: 2H2 + O2 -> 2H2O This equation shows that 1 mole of O2 reacts with 2 moles of H2. So, to completely react with 6 moles of H2, you would need 3 moles of O2.
H2 +Cl2---------------->2HCl Since H2 and Cl2 react in 1:1 mole ratio the number of moles of H2 reacting is equal to the number of moles of Cl2 which is equal to 0.213
For the reaction of propane (C3H8) with oxygen (O2), the balanced equation is: C3H8 + 5O2 -> 3CO2 + 4H2O. This means that 5 moles of O2 are required to react completely with 1 mole of propane (C3H8). Therefore, to react completely with 4 moles of propane, you would need 20 moles of O2.
The balanced chemical equation for the reaction between ammonia (NH3) and oxygen (O2) is 4NH3 + 3O2 → 2N2 + 6H2O. From the equation, we can see that 3 moles of O2 are needed to react with 4 moles of NH3. This means the molar ratio of O2 to NH3 is 3:4. First, calculate the number of moles of NH3 in 200.0 g: 200.0 g NH3 / 17.03 g/mol NH3 = 11.75 moles NH3 Now, calculate the number of moles of O2 needed using the molar ratio: 11.75 moles NH3 * (3 moles O2 / 4 moles NH3) = 8.81 moles O2 Finally, convert moles of O2 to grams: 8.81 moles O2 * 32 g/mol O2 = 282.0 g O2.
The balanced equation shows that 2 moles of H2S react with 3 moles of O2. Therefore, to react completely with 2.3 moles of H2S, you would need (3/2) x 2.3 moles of O2 which is equal to 3.45 moles of O2.
We need to know the number of moles of WHAT is to react with the butane to provide you with an answer.
The balanced chemical equation for the reaction between iron oxide (Fe2O3) and aluminum (Al) is 2Al + Fe2O3 → Al2O3 + 2Fe. This shows that 2 moles of Al react with 1 mole of Fe2O3. Therefore, 2.5 moles of Al would need 1.25 moles of Fe2O3 to completely react.