How many moles of C are needed to react with 0.490 mole SO2?
Since molecules of potassium contain only single potassium atoms, molecules of iodine contain two atoms, and moles of potassium iodide contain one atom of each element, 2.5 moles of iodine are needed to react completely with 5 moles of potassium.
The balanced equation for the reaction is: 3H2 + N2 -> 2NH3 From the balanced equation, we can see that 3 moles of hydrogen are needed to react completely with 1 mole of nitrogen. So if there are 3 moles of nitrogen, you would need 9 moles of hydrogen to react completely.
4 mole cuO X 2/1 = 8 mole Hcl
Assuming a balanced chemical equation, you would need 3 moles of H2 to react with 1 mole of N2. Therefore, if you have 0.90 moles of N2, you would need 0.90 x 3 = 2.70 moles of H2 to fully react with it.
To determine the number of moles of calcium hydroxide needed to react with the nitric acid, you would need to know the concentration of the nitric acid. With the concentration, you can use the balanced chemical equation of the reaction to calculate the moles of calcium hydroxide required.
10 moles of nitrogen dioxide are needed to react with 5,0 moles of water.
The answer is 699 moles perchloric acid.
These reagents doesn't react.
1.35
To determine how many moles of oxygen are needed to completely react with isooctane (C₈H₁₈), we can use the balanced combustion reaction: 2 C₈H₁₈ + 25 O₂ → 16 CO₂ + 18 H₂O. From this equation, 2 moles of isooctane react with 25 moles of oxygen, indicating that 1 mole of isooctane requires 12.5 moles of oxygen. Therefore, for 4 moles of isooctane, 4 × 12.5 = 50 moles of oxygen are needed.
63 g of water are needed.
To determine the number of moles of oxygen needed to react with 4.52 moles of carbon monoxide (CO), we refer to the balanced chemical equation for the reaction: 2 CO + O₂ → 2 CO₂. From the equation, 2 moles of CO react with 1 mole of O₂. Therefore, to find the moles of O₂ required, we can use the ratio: (4.52 moles CO) × (1 mole O₂ / 2 moles CO) = 2.26 moles of O₂. Thus, 2.26 moles of oxygen are needed to react with 4.52 moles of CO.
Since molecules of potassium contain only single potassium atoms, molecules of iodine contain two atoms, and moles of potassium iodide contain one atom of each element, 2.5 moles of iodine are needed to react completely with 5 moles of potassium.
Al+HCl===> AlCl3+H2 Is the reaction. You need &.2 moles of HCl.
H2 +Cl2---------------->2HCl Since H2 and Cl2 react in 1:1 mole ratio the number of moles of H2 reacting is equal to the number of moles of Cl2 which is equal to 0.213
The balanced equation for the reaction is: 3H2 + N2 -> 2NH3 From the balanced equation, we can see that 3 moles of hydrogen are needed to react completely with 1 mole of nitrogen. So if there are 3 moles of nitrogen, you would need 9 moles of hydrogen to react completely.
4 mole cuO X 2/1 = 8 mole Hcl