6 orbital shells. Inner orbital shell (1st shell) containing 2 electrons. Next shell (2nd shell) containing 18, next containing
There are 2 valence electrons in Barium.
Barium has 2 valence electrons. It needs to give up these 2 electrons to achieve a noble gas electron configuration, specifically by having a filled outer shell like a noble gas.
Valence electron configuration in group 1A: ns1 in which n=1, 2, 3, 4, 5, ... etc. Starting with Hydrogen, H, electron configuration: 1s1 followed by Lithium, Li, electron configuration: (1s2), 2s1 (non valence electrons in () brackets)
Se and Te will have the same valence-shell electron configuration as they are both in the same group (group 16) and have 6 valence electrons. Sr and Cs will have different valence-shell electron configurations as Sr is in group 2 with 2 valence electrons and Cs is in group 1 with 1 valence electron. N and O will have different valence-shell electron configurations as N has 5 valence electrons while O has 6. H and He will have different valence-shell electron configurations as H has 1 valence electron and He has 2.
Barium has 2 electrons in its outermost shell. To achieve a noble gas electron configuration similar to xenon, which has 8 electrons in its outermost shell, barium would need to give up 2 electrons. This would leave barium with a full outer shell and a stable electron configuration.
one electron in the 5s orbital
There are 2 valence electrons in Barium.
In the ion of barium, two electron are lost to follow the octet rule (to have a complete valence electron shell).
Barium has 2 valence electrons. It needs to give up these 2 electrons to achieve a noble gas electron configuration, specifically by having a filled outer shell like a noble gas.
Barium forms an ion with a 2+ charge because it has 2 valence electrons in its outer shell. By losing these 2 electrons, barium achieves a stable electron configuration similar to a noble gas, which is energetically favorable.
Valence electron configuration in group 1A: ns1 in which n=1, 2, 3, 4, 5, ... etc. Starting with Hydrogen, H, electron configuration: 1s1 followed by Lithium, Li, electron configuration: (1s2), 2s1 (non valence electrons in () brackets)
A barium atom attains a stable electron configuration when it bonds with a halogen atom, such as chlorine, by transferring one of its valence electrons to achieve a full outer shell. This results in the formation of an ionic bond between the two atoms.
Se and Te will have the same valence-shell electron configuration as they are both in the same group (group 16) and have 6 valence electrons. Sr and Cs will have different valence-shell electron configurations as Sr is in group 2 with 2 valence electrons and Cs is in group 1 with 1 valence electron. N and O will have different valence-shell electron configurations as N has 5 valence electrons while O has 6. H and He will have different valence-shell electron configurations as H has 1 valence electron and He has 2.
Barium has 2 electrons in its outermost shell. To achieve a noble gas electron configuration similar to xenon, which has 8 electrons in its outermost shell, barium would need to give up 2 electrons. This would leave barium with a full outer shell and a stable electron configuration.
The condensed ground state electron configuration for Barium is [Xe] 6s^2. This indicates that Barium has a full inner electron shell (represented by the noble gas configuration of Xenon) and two electrons in the outermost 6s orbital.
Two electrons are donated by Barium to an oxidant (nonmetal, eg. O2) by which barium gets oxidised.Ba --> Ba2+ + 2e-This is because Ba is in group 2 of the periodic system, belonging to the 'earth alkali' metals and so it has 2 electrons (2e-) in its valency (or outer) shell (2,8,18,18,8,2). Hence Ba2+ configuration is (2,8,18,18,8,-), with an empty (-) 6th shell (the 'P' shell) like Xenon.
It can reveal the number of valence electrons in the last shell.