Dipole - dipole and London Force
London forces are present in chlorine molecules.
Hydrocarbons typically exhibit London dispersion forces as the predominant intermolecular force due to the presence of nonpolar carbon-carbon and carbon-hydrogen bonds. Additionally, larger hydrocarbons can also exhibit weak van der Waals forces. Overall, the intermolecular forces in hydrocarbons are relatively weak compared to compounds with polar covalent bonds.
The type of intermolecular force present in Br2 is London dispersion forces. These forces are the weakest of the intermolecular forces and result from temporary fluctuations in electron distribution around the molecule, leading to a temporary dipole moment.
In C2H6 (ethane), the predominant intermolecular bonding is van der Waals forces, specifically London dispersion forces. These forces result from temporary fluctuations in electron distribution within molecules.
Nonpolar molecules rely solely on London dispersion forces (LDFs) for their intermolecular interactions. This is significant because LDFs are the weakest type of intermolecular force, resulting in lower boiling and melting points for nonpolar substances compared to polar molecules with stronger intermolecular forces like hydrogen bonding or dipole-dipole interactions.
Intramolecular forces are not intermolecular forces !
London or vanderwal force
ionic
London forces are present in chlorine molecules.
Intermolecular forces are of the type(1) hydrogen bonds (2) dipole-dipole attractions (3) dispersion forces (van der Waals, etc.)
The dominant intermolecular forces in octane are London dispersion forces. These are relatively weak forces that result from temporary fluctuations in electron distribution within atoms and molecules.
Dispersion forces (London dispersion forces) are generally the weakest type of intermolecular force. These forces are caused by temporary fluctuations in electron distribution around atoms or molecules, leading to weak attractions between them.
Bonding affects intermolecular forces by influencing the strength of attractions between molecules. Covalent bonds within molecules contribute to intramolecular forces, while intermolecular forces, such as hydrogen bonding or van der Waals forces, occur between molecules. The type and strength of bonding within a molecule can impact the overall intermolecular forces affecting its physical properties.
Hydrocarbons typically exhibit London dispersion forces as the predominant intermolecular force due to the presence of nonpolar carbon-carbon and carbon-hydrogen bonds. Additionally, larger hydrocarbons can also exhibit weak van der Waals forces. Overall, the intermolecular forces in hydrocarbons are relatively weak compared to compounds with polar covalent bonds.
dipole-dipole attractions
hydrogen bonds
methane