answersLogoWhite

0

Diffusion of ion molecules accross a permeable membrane

User Avatar

Wiki User

16y ago

What else can I help you with?

Continue Learning about Chemistry

Synthesis of ATP by the chemiosmotic mechanism occurs during?

The synthesis of ATP by the chemiosmotic mechanism occurs during cellular respiration, specifically in the inner mitochondrial membrane. This process involves the pumping of protons across the membrane, creating an electrochemical gradient that drives ATP synthase to produce ATP from ADP and inorganic phosphate.


Which process is directly responsible for the synthesis of adenosine triphoate molecules?

The process responsible for the synthesis of adenosine triphosphate (ATP) molecules is called oxidative phosphorylation, which occurs in the mitochondria of a cell. During oxidative phosphorylation, energy from the oxidation of nutrients is used to pump protons across the inner mitochondrial membrane, creating a proton gradient that drives the synthesis of ATP.


How molecules and ions influence osmosis?

Molecules and ions can influence osmosis by creating a concentration gradient across a semi-permeable membrane. This concentration gradient drives the movement of water molecules to areas of higher solute concentration, affecting the direction and rate of osmosis. Additionally, the presence of specific molecules or ions can alter the osmotic pressure of a solution, further impacting the movement of water molecules.


The difference between oxidative phosphorylation and chemiosmotic coupling?

oxidative phosphorylation does not involve with the respiratory complex in the inner mitochondria membrane. Oxidative phosphorylation useful in generate the production of ATP from the proton gradient or proton motive force. Chemiosmotic coupling invilve the manner of ETC on how its create the proton gradient and the proton gradient is indirectly directed with the production of ATP.The proton gradient causes the conformational change of tigthly binding of ATP to open binding ATP .Then ATP can be released and be used to the metabolic cell needs and translocate the ATP to cytoplasm that can be used to phosphorylate substrate.


Which process do oxygen molecules move down a concentration gradient?

Oxygen molecules move down a concentration gradient through simple diffusion. This means they move from an area of higher concentration to an area of lower concentration until equilibrium is reached.

Related Questions

What is the source of the energy that produces the chemiosmotic gradient in mitochondria?

The energy that produces the chemiosmotic gradient in mitochondria is derived from the electron transport chain. As electrons are transferred along the chain, protons are pumped across the inner mitochondrial membrane, creating a proton gradient. This gradient is then used by ATP synthase to generate ATP from ADP and inorganic phosphate.


Synthesis of ATP by chemiosmotic mechanism occurs during?

Synthesis of ATP by chemiosmotic mechanism occurs during oxidative phosphorylation in the inner mitochondrial membrane. Protons are pumped across the membrane by the electron transport chain, creating a proton gradient. ATP synthase then uses this gradient to generate ATP from ADP and inorganic phosphate.


Where in the chloroplast is the chemiosmotic gradient developed?

The chemiosmotic gradient is developed across the thylakoid membrane of the chloroplast. This is achieved through the transfer of protons from the stroma to the thylakoid lumen during the light-dependent reactions of photosynthesis.


Synthesis of ATP by the chemiosmotic mechanism occurs during?

The synthesis of ATP by the chemiosmotic mechanism occurs during cellular respiration, specifically in the inner mitochondrial membrane. This process involves the pumping of protons across the membrane, creating an electrochemical gradient that drives ATP synthase to produce ATP from ADP and inorganic phosphate.


Is hydrogen gradient across the mitochondrial inner membrane a cellular energy currency?

ATP molecules are essentially cellular energy currency. The hydrogen gradient (or proton gradient as it is technically called) is responsible for the functioning of a protein complex called ATP synthase which in turn is responsible for the synthesis of ATP molecules. Therefore, the proton gradient is the driving force for the synthesis of ATP molecules.


Which process is directly responsible for the synthesis of adenosine triphoate molecules?

The process responsible for the synthesis of adenosine triphosphate (ATP) molecules is called oxidative phosphorylation, which occurs in the mitochondria of a cell. During oxidative phosphorylation, energy from the oxidation of nutrients is used to pump protons across the inner mitochondrial membrane, creating a proton gradient that drives the synthesis of ATP.


What is mitchells chemiosmotic hypothesis?

Mitchell's chemiosmotic hypothesis proposes that the energy needed for ATP synthesis in mitochondria is generated by the electrochemical gradient of protons across the inner mitochondrial membrane. This gradient is established by the pumping of protons out of the mitochondrial matrix during electron transport chain reactions. The protons then flow back into the matrix through ATP synthase, driving the production of ATP.


How molecules and ions influence osmosis?

Molecules and ions can influence osmosis by creating a concentration gradient across a semi-permeable membrane. This concentration gradient drives the movement of water molecules to areas of higher solute concentration, affecting the direction and rate of osmosis. Additionally, the presence of specific molecules or ions can alter the osmotic pressure of a solution, further impacting the movement of water molecules.


What is chemiosmotic generation of ATP driven by?

Chemisosmosis is generated by hydrogen ions passing through ATP synthases. The ATP synthase are the only patches of the membrane that are permeable to the hydrogen ions. The ATP synthase uses the flow of hydrogen ions to change ADP to ATP since enough energy is released by flow of hydrogen ions through the ATP synthase.


The energy source responsible for the motion of molecules that make up the atmosphere is a the pressure caused by the weight of air b solar power c atmospheric tides d natural kinetic energy?

The energy source responsible for the motion of molecules in the atmosphere is the pressure caused by the weight of the air. This pressure gradient drives the movement of air molecules from areas of high pressure to areas of low pressure, creating winds and atmospheric circulation patterns.


Does active transport move molecules against the concentration gradient?

Yes, active transport moves molecules against the concentration gradient.


Does active transport involve the movement of molecules against the concentration gradient?

Yes, active transport involves the movement of molecules against the concentration gradient.