Heisenberg
Around the atomic nucleus, on electron shells.
Heisenberg's Uncertainty Principle states that the more precisely we know the position of a particle (like an electron), the less precisely we can know its momentum and vice versa. This uncertainty arises from the wave-particle duality of quantum mechanics.
The region around a nucleus where an electron might be found is called an electron cloud or electron orbital. It represents the probability of finding an electron at a specific location based on its energy level. The electron cloud is a three-dimensional representation of where an electron is likely to be located within an atom.
The electron is located in the electon cloud around the nuclues. some people may say a cloud but it is a electron cloud. hope this helps. Also You can add clouds to make a electron2 cloud
Not exactly. Electrons orbit the nucleus in an atom. An atom is a fundamental piece of matter. (Matter is anything that can be touched physically.) Everything in the universe (except energy) is made of matter, and, so, everything in the universe is made of atoms. An atom itself is made up of three tiny kinds of particles called subatomic particles: protons, neutrons, and electrons. The protons and the neutrons make up the center of the atom called the nucleus and the electrons fly around above the nucleus in a small cloud. The electrons carry a negative charge and the protons carry a positive charge. In a normal (neutral) atom the number of protons and the number of electrons are equal. Often, but not always, the number of neutrons is the same, too.
Electrons orbit the nucleus of an atom. The exact location of a specific electron, however, can not be known for certain. The general area where the electron might be found is in its orbital.
Uncertainty
The exact location of an electron can not be known. Electrons' locations can be merely estimated. Electron "clouds" or orbitals are general areas where an electron is likely to be found. There is always uncertainty as to where the electron actually is.
It is not possible to know both the precise velocity and position of an electron simultaneously due to the Heisenberg Uncertainty Principle. This principle states that the more precisely one property (like position) is known, the less precisely the other property (like velocity) can be known. Therefore, the uncertainty in one measurement leads to uncertainty in the other.
The cloud is the area in which the electron may be. As observation changes the position of quantum scale objects, certainty of its location cannot be known.
As we know in klystron tube drift space is assumed to be free of any electric field. Therefore, the high velocity electron emerging in the later period are able to overtake the low velocity electrons leaving the buncher grids. As a result of these actions, the electrons gradually bunch together as they travel down the drift space. This mechanism of variation in electron velocity in the drift space is known as velocity modulation.
Modern atomic theory describes electrons as existing in a probability cloud around the nucleus, rather than following strict paths or orbits. This is known as the electron cloud model, which considers electrons to be spread out in regions known as orbitals. The exact location of an electron within an orbital is uncertain and subject to fluctuations.
In an electron cloud, which a probability range circling around the atom. Due to the Heisenberg Uncertainty Principle, both an electron's location and speed can not be known at the same time. Therefore, a range is created.
The movement of an electron is described by a function that represents its probability distribution in space, known as the wave function. This function helps predict the likelihood of finding the electron at a specific location within an atom.
Drift velocity Vd = acceleration x relaxation time So Vd = (E e / m) * t Now Vd / E is defined as the drift velocity per unit electric field and known to be mobility of free electron Hence mobility = (e/m) x t Thus mobility will be different in different material as it depends on relaxation time. e/m is the specific charge of electron which is a constant value equals to 1.759 x 1011
Around the atomic nucleus, on electron shells.
He developed an equation from which one can derive the probability of an electron having a specific value for location or velocity. He had nothing whatsoever to do with the discovery of neutrons.