The absorbance versus concentration curve is rarely straight because the relationship between absorbance and concentration is not always linear. Factors such as non-linear interactions between molecules, chemical reactions, and instrumental limitations can cause the curve to be curved instead of straight.
The calibration curve of absorbance versus concentration can be used to determine the concentration of a substance in a sample by measuring the absorbance of the sample and comparing it to the absorbance values on the calibration curve. By finding the corresponding concentration value on the curve, the concentration of the substance in the sample can be determined accurately.
in our syllabus there is only the first and the zero order reaction in which if the graph is plotted between the concentration and time then it is a zero order reaction while if the graph is between the log of concentration and time then the reaction is of the first order.hope this will help u.
To prove graphically that a reaction is first order, you would plot the natural log of the concentration of the reactant versus time. If the resulting graph is linear, then the reaction is first order. This linear relationship indicates that the rate of the reaction is directly proportional to the concentration of the reactant.
To calculate the reaction order from concentration and time, you can use the integrated rate laws for different reaction orders. By plotting the concentration of the reactant versus time and determining the slope of the line, you can identify the reaction order. The reaction order can be 0, 1, or 2, depending on the relationship between concentration and time.
The initial rate of a reaction can be determined by measuring the change in concentration of reactants or products over a short period of time at the beginning of the reaction. This can be done by plotting a graph of concentration versus time and calculating the slope of the line at the start of the reaction.
You need a graphic concentration versus absorbance.
The calibration curve of absorbance versus concentration can be used to determine the concentration of a substance in a sample by measuring the absorbance of the sample and comparing it to the absorbance values on the calibration curve. By finding the corresponding concentration value on the curve, the concentration of the substance in the sample can be determined accurately.
A graph of absorbance versus concentration should pass through the origin because, according to Beer-Lambert Law, absorbance is directly proportional to concentration. When the concentration of a solution is zero, there are no absorbing species present, resulting in zero absorbance. This linear relationship indicates that as concentration increases, absorbance increases proportionally, reinforcing that the graph should start at the origin (0,0). Any deviation from this could indicate issues such as instrument calibration errors or scattering effects.
Too many words
The rate order of a concentration of a substance using a graph depends on the constant k. For a reactant concentration versus time graph, k is minus and the order is zero. The same goes for a logarithm reactant concentration versus time graph where the order is one. But for an inverse of reactant concentration versus time graph, the order is two and k is positive. All these graphs should have straight lines and k is the value of the slope.
in our syllabus there is only the first and the zero order reaction in which if the graph is plotted between the concentration and time then it is a zero order reaction while if the graph is between the log of concentration and time then the reaction is of the first order.hope this will help u.
To investigate absorbance versus time, you would typically measure the absorbance of a sample at regular time intervals using a spectrophotometer. This data can then be plotted on a graph to observe any changes or trends in absorbance over time, which can provide insights into the reaction kinetics or other time-dependent processes happening in the sample. It is important to ensure that the measurement conditions (wavelength, path length, temperature, etc.) remain constant throughout the experiment for accurate results.
generation of ATP
Constant.
apical dominance
To prove graphically that a reaction is first order, you would plot the natural log of the concentration of the reactant versus time. If the resulting graph is linear, then the reaction is first order. This linear relationship indicates that the rate of the reaction is directly proportional to the concentration of the reactant.
Straight line