oxygen is more electronegative than nitrogen so we would expect a greater bond dipole for O-H as compared to N-H. Also water has two lone pairs whereas ammonia has only one. and these contribute to the net dipole moment.
Water has a greater dipole moment than ammonia because water's bent molecular geometry results in stronger overall dipole-dipole interactions due to the greater electronegativity difference between oxygen and hydrogen. This leads to a larger separation of positive and negative charges in water compared to ammonia, which has a trigonal pyramid structure.
The dipole moment of liquid water is greater than in the gas phase because in the liquid state, water molecules are closer together and can align their dipoles more effectively. In the gas phase, water molecules are more spread out and have greater freedom of movement, resulting in a lower overall dipole moment.
Water (H2O) and ammonia (NH3) are examples of molecules that have a permanent dipole moment due to their asymmetrical molecular geometry. This means they have a positive end and a negative end, leading to an overall dipole moment.
Molecules with a dipole moment have an uneven distribution of electron density, leading to a separation of positive and negative charges. Examples include water (H2O), ammonia (NH3), and hydrogen chloride (HCl). Symmetrical molecules like carbon dioxide (CO2) typically do not have a dipole moment due to their balanced distribution of charge.
Water has a higher boiling point than ammonia and hydrofluoric acid because hydrogen bonding in water molecules is stronger than the dipole-dipole interactions present in ammonia and hydrofluoric acid. The presence of hydrogen bonding allows water molecules to come closer together, requiring more energy to separate them, hence a higher boiling point.
Water has a greater dipole moment than ammonia because water's bent molecular geometry results in stronger overall dipole-dipole interactions due to the greater electronegativity difference between oxygen and hydrogen. This leads to a larger separation of positive and negative charges in water compared to ammonia, which has a trigonal pyramid structure.
The dipole moment of liquid water is greater than in the gas phase because in the liquid state, water molecules are closer together and can align their dipoles more effectively. In the gas phase, water molecules are more spread out and have greater freedom of movement, resulting in a lower overall dipole moment.
Water (H2O) and ammonia (NH3) are examples of molecules that have a permanent dipole moment due to their asymmetrical molecular geometry. This means they have a positive end and a negative end, leading to an overall dipole moment.
Molecules with a dipole moment have an uneven distribution of electron density, leading to a separation of positive and negative charges. Examples include water (H2O), ammonia (NH3), and hydrogen chloride (HCl). Symmetrical molecules like carbon dioxide (CO2) typically do not have a dipole moment due to their balanced distribution of charge.
The dipole moment vector of a water molecule points from the partially positive hydrogen atom to the partially negative oxygen atom. This is due to the unequal sharing of electrons in the O-H bonds, resulting in a polar molecule with a net dipole moment. The dipole moment is important for water's unique properties, such as its ability to form hydrogen bonds with other molecules.
Water is more polar than 2-propanol because it has a greater difference in electronegativity between oxygen and hydrogen atoms, leading to a larger dipole moment. 2-propanol also has a dipole moment due to the hydroxyl group, but it is less polar than water.
Both CH2Cl2 and CHCl3 are bonded in a tetrahedral structure. The net dipole moment of CHCl3 is less than that of CH2Cl2 because the individual C-Cl dipole moments of CHCl3 cancel out each other to a greater extent.
The simplest answer is polarity. As I'm sure you know, both water and ammonia form hydrogen bonds with like molecules. But the critical difference is that water is a polar molecule and has a dipole moment, whereas ammonia is non-polar and does not have a dipole moment. A dipole moment is the result of polar bonds. It is important to note that having polar bonds DOES NOT necessarily make a molecule polar. Imagine that the bonds on a molecule pushes the nucleus in the direction of the bond. In a molecule with all of its bonds evenly spaced and of the same type (Hydrogen to Nitrogen, for example), such as in NH3, all of the bonds cancel each other out. But in a molecule with its bonds unevenly spaced, such as in H2O, the bonds do not cancel each other out, resulting in a dipole moment.
Ammonia (NH3) is more polar than water (H2O) due to the electronegativity difference between nitrogen and hydrogen atoms, which leads to a stronger dipole moment in NH3.
Water has a higher boiling point than ammonia and hydrofluoric acid because hydrogen bonding in water molecules is stronger than the dipole-dipole interactions present in ammonia and hydrofluoric acid. The presence of hydrogen bonding allows water molecules to come closer together, requiring more energy to separate them, hence a higher boiling point.
Water (H2O) has stronger intermolecular forces than ammonia (NH3) due to hydrogen bonding in water molecules. Hydrogen bonding is a type of intermolecular force that is stronger than the dipole-dipole interactions present in ammonia molecules.
A molecule has a net dipole moment if it has polar bonds arranged in such a way that they do not cancel each other out. For example, water (H₂O) has a bent shape, leading to a net dipole moment due to the difference in electronegativity between hydrogen and oxygen. In contrast, carbon dioxide (CO₂) is linear, and its polar bonds cancel each other, resulting in no net dipole moment. Therefore, to determine if a molecule has a net dipole moment, one must consider both its bond polarities and its geometry.