Both are polar substances capable of a strong type of intermolecular attraction called hydrogen bonding.
NH3 and H2O molecules therefore attract one another.
Hydrogen bonding is strongest in molecules of H2O (water) because oxygen is highly electronegative, creating a large difference in electronegativity between the hydrogen and oxygen atoms which strengthens the hydrogen bonding.
Water (H2O) has stronger intermolecular forces than ammonia (NH3) due to hydrogen bonding in water molecules. Hydrogen bonding is a type of intermolecular force that is stronger than the dipole-dipole interactions present in ammonia molecules.
The balanced chemical equation for the reaction NH3 + NO2 -> N2O + H2O is: 4 NH3 + 4 NO2 -> 3 N2O + 6 H2O
The boiling point of a compound is influenced by its molecular weight and intermolecular forces. AsH3 has a lower boiling point than NH3 because it is a lighter molecule (lower molecular weight) and has weaker hydrogen bonding interactions between its molecules compared to NH3, which has stronger hydrogen bonding.
Ammonium hydroxide (NH4OH) yields ammonia (NH3) and water (H2O) when it undergoes decomposition.
Hydrogen bonding is strongest in molecules of H2O (water) because oxygen is highly electronegative, creating a large difference in electronegativity between the hydrogen and oxygen atoms which strengthens the hydrogen bonding.
Ammonia (NH3) is more polar than water (H2O) due to the electronegativity difference between nitrogen and hydrogen atoms, which leads to a stronger dipole moment in NH3.
Hydrogen bonding is stronger in water than in ammonia.
Water (H2O) has stronger intermolecular forces than ammonia (NH3) due to hydrogen bonding in water molecules. Hydrogen bonding is a type of intermolecular force that is stronger than the dipole-dipole interactions present in ammonia molecules.
ammonia (NH3) dissolves in water (H2O) to form ammonium hydroxide (NH4OH)
The balanced chemical equation for the reaction NH3 + NO2 -> N2O + H2O is: 4 NH3 + 4 NO2 -> 3 N2O + 6 H2O
The boiling point of a compound is influenced by its molecular weight and intermolecular forces. AsH3 has a lower boiling point than NH3 because it is a lighter molecule (lower molecular weight) and has weaker hydrogen bonding interactions between its molecules compared to NH3, which has stronger hydrogen bonding.
Ammonium hydroxide (NH4OH) yields ammonia (NH3) and water (H2O) when it undergoes decomposition.
This is an oxidation reaction of N from -3 (in NH3) to +2 (in NO) oxidation value. 4 NH3 + 5 O2 --> 6 H2O + 4 NO
NH3 is more like an ionic compound compared to PH3 because ammonia (NH3) displays some characteristics of ionic bonding due to its ability to accept and donate protons, while phosphine (PH3) has predominantly covalent bonding due to similar electronegativities of phosphorus and hydrogen.
Using the molar mass of nh3, we find that we have 2.5 moles of nh3. Since 3 moles of h2o are produced per 2 moles of nh3, we see that we will produce 3.75 moles of h2o. This is equivalent to around 3.79 g.
The reaction between NH3 (ammonia) and C6H5COOH (benzoic acid) results in the formation of C6H5COONH4 (ammonium benzoate) and H2O (water). The balanced chemical equation is: C6H5COOH + NH3 → C6H5COONH4 + H2O