Each has four valence electrons, but germanium will at a given temperature have more free electrons and a higher conductivity. Silicon is by far the more widely used semiconductor for electronics, partly because it can be used at much higher temperatures than germanium.
Germanium has a smaller band gap compared to silicon, allowing it to conduct electricity more effectively. Its crystal structure also has a closer packing arrangement of atoms compared to silicon, making it more metallic in nature. Overall, these factors contribute to germanium exhibiting more metallic properties than silicon.
The difference in breakdown voltage between silicon (0.7V) and germanium (0.3V) is mainly due to their different band gap energies. Silicon has a larger band gap compared to germanium, resulting in a higher breakdown voltage. This means that silicon can withstand a higher voltage before breaking down compared to germanium.
The depletion region is smaller in germanium compared to silicon because germanium has a lower bandgap energy, meaning that charge carriers can easily cross the depletion region and recombine on the other side. This results in a smaller built-in potential and a smaller depletion region in germanium.
Silicon is preferred over germanium because it is more abundant, less costly, and has a higher thermal stability. Silicon also forms a better oxide layer, making it more suitable for integrated circuit applications. Additionally, silicon has better electron mobility and is less susceptible to thermal runaway compared to germanium.
products made by silicon are more stable than those made by germanium
Germanium has a smaller bandgap compared to silicon, leading to higher intrinsic carrier concentration and hence greater leakage current. Additionally, germanium has a higher intrinsic carrier mobility, which can further contribute to increased leakage current compared to silicon.
The higher leakage current in germanium compared to silicon is mainly due to its lower bandgap energy, which allows more thermally generated carriers to flow through at room temperature. Additionally, germanium has lower electron mobility and higher intrinsic carrier concentration than silicon, contributing to increased leakage current.
the leakage current of silicon is less when compared with the leakage current of germanium.. hence scr's are made up of silicon than germanium.. hope tis one is useful to u all!- Vignesh.L(engineer, 1st year)
A silicon diode has a voltage drop of approximately 0.7V, while a germanium diode has a voltage drop of approximately 0.3V. Though germanium diodes are better in the area of forward voltage drop, silicon diodes are cheaper to produce and have higher breakdown voltages and current capabilities.
A germanium diode has a lower forward voltage drop compared to a silicon diode, typically around 0.3V for germanium and 0.7V for silicon. Germanium diodes also have a higher reverse current leakage compared to silicon diodes.
Silicon is actually preferred to germanium within the manufacture of semiconductor devices due to the following reasons:Silicon is cheap and abundantIn silicon, leakage current is less affected by temperature as compared to germanium.The leakage current in silicon is very very small as compared to germanium.The working temperature of silicon is more than that of germanium. The working junction temperature of silicon can go as high as 150C whereas the working junction temperature of germanium can only go as high as 60CSilicon dioxide is a stable insoluble solid that can be used both to electrically insulate circuitry and to passivate junctions preventing contamination (allowing use of inexpensive plastic packages), germanium dioxide is a crumbly water soluble solid (this requires all germanium devices to be packaged in expensive metal or glass hermetically sealed cases and making germanium integrated circuits almost impossible)
Germanium diodes have a lower forward voltage drop compared to silicon diodes, making them suitable for low voltage applications. However, they have higher leakage current and are more temperature sensitive. Silicon diodes, on the other hand, have higher forward voltage drop but are more stable over a wider temperature range and have lower leakage current.
The symbol 'A' indicates that this device is made from germanium . as you may know germanium has less cut in voltage so this device is used for low power signal or for signal processing. also the leakage current or reverse saturation current of germanium is greater than silicon.
Germanium has four number of shells while Silicon has three number of shell. therefore for germanium less energy is required to move the electron from valence band to conduction band if compared to silicon. So at room temperature for germanium their are more number of electrons present in conduction bond hence more number of holes present in the valence energy band. Due to movement of holes reverse saturation current is produced. Their is more number of hole movement in germanium comparatively therefore reverse saturation current is more than silicon for germanium. You may refer to Electronic Devices and Circuits by Allen Mottershead Regards, Zain Ijaz UCTI, Malaysia Mechatronic Engineer.
Though germanium diodes were the first ones fabricated, several factors make silicon the choice vs. germanium diodes. Silicon diodes have a greater ease of processing, lower cost, greater power handling, less leakage and more stable temperature characteristics than germanium diodes. Germanium diodes' lower forward drop (.2V to .3V versus .7V to 1.0V) make them better at small signal detection and rectification.
Germanium is not commonly used in the fabrication of thyristors primarily due to its lower thermal stability and higher leakage current compared to silicon. Silicon's superior electrical properties, including a wider bandgap and better temperature handling, make it more suitable for high-power applications. Additionally, silicon's well-established manufacturing processes and availability further enhance its preference over germanium in thyristor production. As a result, silicon-based thyristors are more reliable and efficient for modern electronic applications.
Silicon transistors are preferred to germanium transistors because they exhibit higher thermal stability and are less prone to temperature variations. Silicon transistors also have a higher maximum operating temperature, improved frequency response, and are more reliable in terms of long-term performance. Additionally, silicon is more abundant and easier to work with in manufacturing processes compared to germanium.