both are in the same period which accounts for closeness. they are nonetheless different because there are more protons in the nucleus which means electrons are brought closer to it so there is a higher ionisation energy or potential
The first ionization energy of potassium is 419 kJ/mol, while the first ionization energy of sodium is 496 kJ/mol. This means that it requires less energy to remove an electron from a potassium atom compared to a sodium atom.
No, potassium has a larger first ionization energy than sodium. Potassium has an extra electron in its valence shell compared to sodium, making it more difficult to remove an electron from a potassium atom compared to a sodium atom.
No, the ionization energy of sodium is not the same as chlorine. The ionization energy of sodium is lower than that of chlorine because sodium requires less energy to remove an electron. Sodium has a single electron in its outer shell, while chlorine has seven electrons in its outer shell, making it harder to remove an electron.
The energy for the sodium-potassium pump is derived from the hydrolysis of ATP molecules. ATP releases energy when its phosphate group is cleaved, providing the necessary energy to move sodium ions out and potassium ions into the cell through the pump.
Francium is the most reactive alkali metal among francium, sodium, and potassium because it has the lowest ionization energy. Francium's reactivity increases moving down Group 1 of the periodic table. Sodium is more reactive than potassium due to sodium's lower ionization energy compared to potassium.
The ionisation enthalpy of potassium is lower than that of sodium.
The first ionization energy of potassium is 419 kJ/mol, while the first ionization energy of sodium is 496 kJ/mol. This means that it requires less energy to remove an electron from a potassium atom compared to a sodium atom.
No, potassium has a larger first ionization energy than sodium. Potassium has an extra electron in its valence shell compared to sodium, making it more difficult to remove an electron from a potassium atom compared to a sodium atom.
The energy to run the sodium-potassium pump is provided by ATP (adenosine triphosphate) hydrolysis. When ATP is broken down into ADP (adenosine diphosphate) and inorganic phosphate, energy is released and used to transport sodium ions out of the cell and potassium ions into the cell through the pump.
yes
The sodium-potassium pump in a cell's membrane is a form of active transportation that uses ATP (adenosine triphosphate) for energy.
Yes, the sodium-potassium pump requires energy to function. It uses ATP to actively transport sodium and potassium ions against their concentration gradients across the cell membrane. This process is essential for maintaining the resting membrane potential and proper cell function.
No, the ionization energy of sodium is not the same as chlorine. The ionization energy of sodium is lower than that of chlorine because sodium requires less energy to remove an electron. Sodium has a single electron in its outer shell, while chlorine has seven electrons in its outer shell, making it harder to remove an electron.
The energy for the sodium-potassium pump comes from ATP hydrolysis, where ATP is broken down into ADP and inorganic phosphate. This process helps maintain the concentration gradients of sodium and potassium ions across the cell membrane.
The energy for the sodium-potassium pump is derived from the hydrolysis of ATP molecules. ATP releases energy when its phosphate group is cleaved, providing the necessary energy to move sodium ions out and potassium ions into the cell through the pump.
Francium is the most reactive alkali metal among francium, sodium, and potassium because it has the lowest ionization energy. Francium's reactivity increases moving down Group 1 of the periodic table. Sodium is more reactive than potassium due to sodium's lower ionization energy compared to potassium.
Potassium (K) has a lower ionization energy than sodium (Na).