8
To represent an eight-digit decimal number in Binary-Coded Decimal (BCD), each decimal digit is encoded using 4 bits. Since there are 8 digits in the number, the total number of bits required is 8 digits × 4 bits/digit = 32 bits. Therefore, 32 bits are needed to represent an eight-digit decimal number in BCD.
103
5
The number of bits needed to represent one symbol depends on the total number of unique symbols. The formula to calculate the number of bits required is ( n = \lceil \log_2(S) \rceil ), where ( S ) is the number of unique symbols. For example, to represent 256 unique symbols, 8 bits are needed, since ( \log_2(256) = 8 ).
To determine how many bytes are needed to represent the number 2501, we first convert it to binary. The binary representation of 2501 is "10011100001," which requires 12 bits. Since one byte is 8 bits, you would need 2 bytes (16 bits) to store the value 2501.
A standard deck of playing cards has 52 cards. To determine how many bits are needed to represent each card, we can use the formula ( \lceil \log_2(52) \rceil ). Since ( \log_2(52) ) is approximately 5.7, we round up to 6 bits. Therefore, 6 bits are needed to uniquely represent each card in a standard deck.
Count them: 643(10)=1010000011(2)
8 bits if unsigned, 9 bits if signed
23 can be represented in binary as 10111 and would therefore require 5 bits to represent.
To determine the number of bits in three dollars, we need to first convert the dollar amount to cents, as there are 100 cents in a dollar. Three dollars is equal to 300 cents. Next, we need to calculate the number of bits in 300 cents. Since 2^8 (256) is the closest power of 2 to 300, we would need at least 8 bits to represent 300 cents accurately.
Most modern digital cameras use 24 bits (8 bits per primary) to represent a color. But more or less can be used, depending on the quality desired. Many early computer graphics cards used only 4 bits to represent a color.