molarity = mol / litre The concentration is 10% HCl in water, assuming this is expressed in w/v (weight to volume) as this is the normal way. The density of 10% HCl is unknown but will be estimated to be the same as water (although slightly incorrect), since no data is given. 1 L of which 10% are HCl is assumed to weigh 1000 grams. 10% HCl x 1000g = 100g of HCl. 100g of HCl is present in 1 L. The mw of HCl = 36.5g/mol, 100g/(36.5g/mol) = 2.74mol is present in 1 L. The molarity is 2.74mol / 1 L = 2.7 M (two significant figures) (Looking up hydrochloric acid in wikipedia tells us that the density of a 10% solution is actually 1048g/L and the actual molarity becomes 2.87M. The calculated number was close enough, but it shows that the density is important. Molality on the other hand is mol/kg, so with molality we can skip the unknown density problem. For practical purposes, molarity is still the mostly used one, because volume is easier to measure than weight in the laboratory when handling toxic solvents that are unhealthy to inhale.)
To find the molarity, first calculate the moles of NH3 in 100g of the solution using the mass percent. Then convert the volume of the solution (1 mL) to liters. Finally, divide moles by liters to obtain the molarity.
To calculate the molarity of a 5% NaCl solution, you need to know the density of the solution. Once you have the density, you can convert the percentage to grams per liter. Then, using the molar mass of NaCl (58.44 g/mol), you can calculate the molarity using the formula Molarity = (mass of solute in g) / (molar mass of solute in g/mol) / (volume of solution in L).
If the density is 1.0 g/ml, one liter of the solution will weigh 1000 grams. 3.0 % of this mass or 30 grams of it is constituted of H2O2. The molar mass of H2O2 is 2 (1.008 + 15.999) = 34.014. The molarity of this solution is therefore 30/34.014 = 0.88, to the justified number of significant digits.
First, calculate the mass of HCl in 100 g of the solution: 18.25% of 100 g is 18.25 g. Convert the volume to liters: 1.2 g/mL = 1.2 kg/L. Calculate molarity using the formula Molarity (M) = (moles of solute)/(volume of solution in liters), where moles of solute = mass of HCl in grams / molar mass of HCl and volume of solution = mass of solution in grams / density of solution in g/mL.
Formalin is 40% solution of formaldehyde not an acid.
The mole fraction of HCl in a 20% aqueous solution can be calculated by converting the percentage to a molarity concentration. Assuming the density of the solution is 1 g/mL, a 20% solution means 20g of HCl in 100g of solution. If the molar mass of HCl is 36.5 g/mol, we can calculate the molarity and then use it to find the mole fraction of HCl in the solution.
To find the molarity, first calculate the moles of NH3 in 100g of the solution using the mass percent. Then convert the volume of the solution (1 mL) to liters. Finally, divide moles by liters to obtain the molarity.
The molarity of a 5% solution of NH3 in water depends on the density and molecular weight of NH3. Without this information, it is not possible to calculate the molarity.
To find the molarity, we first need to calculate the weight percent of hydrochloric acid in the solution: 35% of the solution is HCl. Then we calculate the molarity using the specific gravity, which is the ratio of the density of the solution to the density of water. Finally, we use the molarity formula to find the molarity: Molarity = (Weight % HCl / molar mass of HCl) / (Specific gravity of the solution).
To calculate the molarity of a 5% NaCl solution, you need to know the density of the solution. Once you have the density, you can convert the percentage to grams per liter. Then, using the molar mass of NaCl (58.44 g/mol), you can calculate the molarity using the formula Molarity = (mass of solute in g) / (molar mass of solute in g/mol) / (volume of solution in L).
Molarity is the no of moles of solute dissolved per litre of a solution. now if u want to find it from the percentage purity , here is the formula for that Molarity = % purity x density x 10 ___________________ molar weight of the solute note : density is usually given %purity problems, if its not u can evualvate it from from formula { d= mass/volume} i hope it solves the problem
To convert molarity to percent by volume, you would need to know the molar mass of the solute and the density of the solution. With these values, you can calculate the volume of the solute in a given volume of the solution to determine the percent by volume.
If the density is 1.0 g/ml, one liter of the solution will weigh 1000 grams. 3.0 % of this mass or 30 grams of it is constituted of H2O2. The molar mass of H2O2 is 2 (1.008 + 15.999) = 34.014. The molarity of this solution is therefore 30/34.014 = 0.88, to the justified number of significant digits.
To calculate the percent of a 5 N H2SO4 solution, you need to know the molarity (moles of solute per liter of solution) and the molecular weight of the solute. Once you have that information, you can use the formula: % = (molarity x equivalent weight) / 10. If you provide the molecular weight of H2SO4, I can help you calculate the percent.
To calculate the grams of phosphate in a solution, you first need to determine the molarity of the solution. Once you know the molarity, you can use the molecular weight of phosphate to determine the grams present in the solution. Can you provide the concentration or volume of the K2HPO4 solution?
To find the molarity of a solution with a percent concentration of a solute, you need to know the molecular weight of the solute and the density of the solution. Then, you can use the formula: Molarity (percent concentration density) / (molecular weight 100).
First, calculate the mass of HCl in 100 g of the solution: 18.25% of 100 g is 18.25 g. Convert the volume to liters: 1.2 g/mL = 1.2 kg/L. Calculate molarity using the formula Molarity (M) = (moles of solute)/(volume of solution in liters), where moles of solute = mass of HCl in grams / molar mass of HCl and volume of solution = mass of solution in grams / density of solution in g/mL.