Divide the given number by Avogadro's Number: (3.01 X 1023)/(6.022 X 1023) equals 0.500 moles, to the justified number of significant digits.
To convert atoms to moles, you divide the number of atoms by Avogadro's number (6.022 x 10^23). So, 2.80 x 10^24 atoms of silicon would be 4.65 moles.
Multiply by avagadro's number (6.022x1023) giving 3.203704x1023 atoms
There are 2 atoms of oxygen in each molecule of silicon dioxide (SiO2). Therefore, in 0.100 moles of SiO2, there would be 0.100 moles * 2 atoms = 0.200 moles of oxygen atoms. Finally, since 1 mole of any element contains 6.022 x 10^23 atoms, there are (0.200 moles) * (6.022 x 10^23 atoms/mole) = 1.204 x 10^23 atoms of oxygen in 0.100 moles of silicon dioxide.
To find the number of silicon atoms in 85.0 micrograms of silicon, you would first calculate the moles of silicon using its molar mass. Then, you would use Avogadro's number (6.022 x 10^23 atoms/mol) to convert moles to atoms.
To calculate the number of moles, you need to divide the number of atoms by Avogadro's number (6.022 x 10^23), which represents one mole. For 280 x 10^24 atoms of silicon, you would have 280 x 10^24 / 6.022 x 10^23 = approximately 46.5 moles of silicon.
To convert atoms to moles, you divide the number of atoms by Avogadro's number (6.022 x 10^23). So, 2.80 x 10^24 atoms of silicon would be 4.65 moles.
2,80 1024 atoms of silicon equals 0,465 moles.
To calculate the number of moles in 2.80x10^24 atoms of silicon, you first need to determine the molar mass of silicon, which is approximately 28.0855 g/mol. Next, you can use Avogadro's number, which is 6.022x10^23 atoms/mol, to convert atoms to moles. Divide the number of atoms by Avogadro's number to get the number of moles. Therefore, 2.80x10^24 atoms of silicon is equivalent to approximately 4.65 moles.
To determine the number of silicon atoms in 3.29 g, you first need to calculate the number of moles of silicon using its molar mass (28.0855 g/mol). Then, use Avogadro's number (6.022 x 10^23) to convert moles to atoms.
To find the number of atoms in 15.6 g of silicon, you would first calculate the moles of silicon using its molar mass (28.09 g/mol). Then, you would use Avogadro's number (6.022 x 10^23 atoms/mol) to convert moles to atoms. The final calculation would yield the number of atoms in 15.6 g of silicon.
Multiply by avagadro's number (6.022x1023) giving 3.203704x1023 atoms
2,50 moles of silicon contain 15,055352142.10e23 atoms.
To convert grams into atoms, you have to convert them into moles first. Get the molar mass and multiply it by the number of moles to get the atoms.
Each mole of particles have 6.02 x 10^23 particles. (3.6 x 10^20) / (6.02 x 10^23) = 0.000598 mol of Silicon Ar of Si (Silicon) = 28.1g/mol mass = number of moles x Ar mass = 0.000598 mol x 28.1g/mol = 0.0168g of silicon
There are 2 atoms of oxygen in each molecule of silicon dioxide (SiO2). Therefore, in 0.100 moles of SiO2, there would be 0.100 moles * 2 atoms = 0.200 moles of oxygen atoms. Finally, since 1 mole of any element contains 6.022 x 10^23 atoms, there are (0.200 moles) * (6.022 x 10^23 atoms/mole) = 1.204 x 10^23 atoms of oxygen in 0.100 moles of silicon dioxide.
The answer is 0,465 moles.
3.10 moles SiO2 (1 mole Si/1 mole SiO2)(6.022 X 1023/1 mole Si) = 1.87 X 1024 atoms of silicon =====================