Calcium Nitrtae is Ca(NO3)2 and so there are two moles of nitrate per mole of calcium nitrate. Thus there are 2 x 2.50 = 5.0 moles of nitrate present.
To find the number of moles in 250g of hydrogen nitrate (HNO3), we first need to determine the molar mass of HNO3. The molar mass of HNO3 is 63.01 g/mol. Then, we can calculate the number of moles by dividing the given mass by the molar mass: 250g / 63.01 g/mol = approximately 3.97 moles of HNO3 molecules.
To calculate the number of moles in a solution, use the formula: moles = Molarity x Volume (in liters). First, convert the volume from milliliters to liters by dividing by 1000 (250 mL = 0.25 L). Then, plug the values into the formula: moles = 1.20 mol/L x 0.25 L = 0.30 moles of sodium chloride.
Molar mass of KCl = 39 g/mol (K) + 35.5 g/mol (Cl) = 74.5 g/mol. A 0.5 M solution is required (0.5 mol/L or 0.5 moles per litre). 0.5 moles of KCl is 0.5 mol x 74.5 g/mol = 37.25 g. Dissolving this 37.25 g of KCl in a litre of water would give a 0.5 M solution. If 1 L or 1000 mL of 0.5 M solution contains 0.5 moles then 1 mL of the same concentration solution would contain 0.5/1000 moles and 250 mL would contain 250 x 0.5/1000 moles = 0.125 moles. 0.125 moles of KCl is 0.125 mol x 74.5 g/mol = 9.31 g.
The solution has a total mass of 30 + 250 = 380 g. The mass percent of calcium chloride in this solution is 100(30/380) = 7.9 %, to the justified number of significant digits.
n=c/v n=3M/.25L n=12 mol m=Mxn m=58.443 g/mol x 12 mol m=701.3 g n= mol c=concentration v=volume m=mass M= molar mass Tylerops: I don't agree with this answer. Molarity is defined as Moles/Liters. In other words Molarity is the concentration of a solution. In the above n= Concentration / Liters. That is equal to saying Moles=(Moles/liters)/ Liters. In the above question the concentration is (3 moles/ liter), or 3M. Plus, how can it be possible to have 12 moles in 250ml when you only have 3 moles in each liter of the original solution? Correct ANSWER: 3.00 M, or 3 moles per (L) "liter" calls for having 3 moles per liter of the solution. The question asks how many moles must be in 250ml of a solution that has 3 moles per Liter. You must ask yourself what percent of 1 Liter is 250mls? Since there are a thousand ml in one liter, (1000ml=1L), then 250ml is exactly 25% of a Liter, or .25L. So, 250ml can only hold 25% of the 3.00 Molarity. Meaning that you multiply 3 x .25 and get .75 moles. 58.443g/molNaCl x .75 moles = FINAL ANSWER 43.83225g NaCl, Sig Fig, 43.83gNaCl
250 grams CaCO3 (1 mole CaCO3/100.09 grams) = 2.50 moles of calcium carbonate
To find the number of moles in 250g of hydrogen nitrate (HNO3), we first need to determine the molar mass of HNO3. The molar mass of HNO3 is 63.01 g/mol. Then, we can calculate the number of moles by dividing the given mass by the molar mass: 250g / 63.01 g/mol = approximately 3.97 moles of HNO3 molecules.
250 g iron (III) oxide is equal to 1,565 moles.
Molarity is moles of solute / liters of solvent. Plugging in the data: 0.236M = x / 0.250L; x = (0.236M)(0.250L) = 0.0590 moles of CaCl2. The molecular weight of CaCl2 is 40.1 + 2(35.5) = 111.1 g / mole. The mass of CaCl2 = (MW)(moles) = (111.1g/mole)(0.0590moles) = 6.55g
1 mole in 250 ml and 4 moles in 1 liter or 1000 mls
To prepare a 100 ppm stock solution of nickel nitrate in 250 ml, first calculate the mass of nickel nitrate needed. Nickel nitrate (Ni(NO3)2·6H2O) has a molar mass of approximately 290.79 g/mol. For a 100 ppm solution, you need 100 mg of nickel nitrate in 1 liter, so for 250 ml, you would require 25 mg of nickel nitrate. Weigh out 25 mg of nickel nitrate, dissolve it in a small volume of distilled water, and then dilute the solution to a final volume of 250 ml with distilled water in a volumetric flask.
To determine the number of moles of CaCl2 in a solution, you need to know the concentration of the solution in mol/L. Without this information, it is not possible to calculate the number of moles of CaCl2 in the given volume of 250 ml.
1 mole of anything is 6.022 x 1023 atoms or molecules of that substance. Thus, 2500 atoms of a substance is about 4.151 x 10-21 moles of that substance.
To determine the number of grams of lithium nitrate needed to make 250 grams of lithium sulfate, you need to calculate the molar mass of lithium sulfate and lithium nitrate, then use stoichiometry to find the ratio of lithium nitrate to lithium sulfate. Finally, apply this ratio to find the mass of lithium nitrate needed for the reaction. Lead sulfate is not involved in this calculation as it is not part of the reaction between lithium nitrate and lithium sulfate.
Ther answer is none! ammonium bromide is made from hydrogen bromide and ammonia NH3 + HBr = NH4Br i mole of each makes 1mole of ammonium salt.
To calculate the number of moles in a solution, use the formula: moles = Molarity x Volume (in liters). First, convert the volume from milliliters to liters by dividing by 1000 (250 mL = 0.25 L). Then, plug the values into the formula: moles = 1.20 mol/L x 0.25 L = 0.30 moles of sodium chloride.
Will have to make some assumptions with the little info given. Solid sucrose is 1.587 g/ml in density and has a mass of 342.30 grams/mole Density = grams/milliliters 1.587 g/ml = grams/250 ml = 396.75 grams/342.30 grams = 1.159 moles of sucrose