As P-waves travel at a higher velocity than S-waves they arrive at a seismometer station before the S-waves. The difference between their arrival time can be used to calculate the distance from the seismometer station to the epicentre.
False. The closer an earthquake is, the shorter the time difference between the arrival of P waves and S waves. P waves travel faster than S waves, so the time interval decreases as the distance to the earthquake epicenter decreases.
The difference in arrival times of P-waves and S-waves can be used to find an earthquake's epicenter. P-waves travel faster than S-waves, so by measuring the time lag between the arrival of the two wave types at different seismic stations, scientists can triangulate the epicenter of the earthquake.
The time it takes for seismic waves to reach the seismograph can be used to calculate the distance between the epicenter and seismograph. By knowing the average speed of seismic waves in the earth, the time difference between the arrival of P- and S-waves can be used to determine the distance.
The time difference in arrival between P and S waves can help determine the distance to an earthquake epicenter. For each second of difference, the earthquake is roughly 7.5 kilometers away. So, a time difference of, for example, 10 seconds would indicate the earthquake is approximately 75 kilometers away.
The distance between a seismological recording station and the earthquake source is determined from the arrival times of seismic waves at the station. By comparing the arrival times of P-waves and S-waves, seismologists can calculate the distance to the earthquake source using the difference in their arrival times.
Yes, that is correct. The time difference between the arrival of P-waves and S-waves increases as the earthquake epicenter gets closer to the seismograph. P-waves are faster, so they arrive first, followed by the slower S-waves.
The arrival time difference between P-waves and S-waves at station 4 would be shorter than at station 3. This is because the further away a seismic station is from the earthquake epicenter, the shorter the time difference between the arrival of P-waves and S-waves. This is due to the faster travel speed of P-waves compared to S-waves.
Your standing on it! P-waves travel faster than S-waves through the Earth. As such the further away a seismometer station is from the epicentre of an Earthquake, the larger the difference between arrival times will be. By the same logic this means that the closer you get to the epicentre, the smaller the difference in arrival time will be until your at the epicentre when the difference will be zero!
False. The closer an earthquake is, the shorter the time difference between the arrival of P waves and S waves. P waves travel faster than S waves, so the time interval decreases as the distance to the earthquake epicenter decreases.
The difference in arrival times of P-waves and S-waves can be used to find an earthquake's epicenter. P-waves travel faster than S-waves, so by measuring the time lag between the arrival of the two wave types at different seismic stations, scientists can triangulate the epicenter of the earthquake.
The difference in arrival times of P and S waves.
The time it takes for seismic waves to reach the seismograph can be used to calculate the distance between the epicenter and seismograph. By knowing the average speed of seismic waves in the earth, the time difference between the arrival of P- and S-waves can be used to determine the distance.
The time difference in arrival between P and S waves can help determine the distance to an earthquake epicenter. For each second of difference, the earthquake is roughly 7.5 kilometers away. So, a time difference of, for example, 10 seconds would indicate the earthquake is approximately 75 kilometers away.
The distance between a seismological recording station and the earthquake source is determined from the arrival times of seismic waves at the station. By comparing the arrival times of P-waves and S-waves, seismologists can calculate the distance to the earthquake source using the difference in their arrival times.
The arrival time difference between p- and s-waves increases with distance from the epicenter. p-waves travel faster and arrive first, followed by s-waves which are slower. The farther a city is from the epicenter, the greater the time lag between the arrival of the two waves.
The difference in arrival times between P-waves (primary waves) and S-waves (secondary waves) is directly related to the distance from the seismic station to the earthquake's epicenter. P-waves travel faster than S-waves, so the longer the time gap between their arrivals, the farther the seismic station is from the epicenter. By measuring this time difference, seismologists can calculate the distance to the epicenter using established formulas. This method is a key component of locating earthquakes.
As the distance from the earthquake increases, the difference in arrival times between P-waves and S-waves remains relatively constant. This is because P-waves travel faster than S-waves, and the time difference depends primarily on the properties of the materials they travel through rather than the distance itself. However, the absolute arrival times of both waves will increase with distance, leading to a longer overall time interval before the S-waves are detected. Thus, while the difference remains stable, the longer distances result in a larger cumulative delay in detecting the seismic waves.