answersLogoWhite

0

any gadget won't work, as no current would be able to pass due to lack of electric potential difference

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Earth Science

What is the electric field half way to the centre of a conducting sphere charged to a potential of 15v?

electric field inside the conducting sphere is ZER0..! because their are equivalent charges all around the sphere which makes the net force zero hence we can say that the electric field is also zero.!


Why you take point at infinity in describing electric potential?

The point at infinity is often used in discussing electric potential as a reference point to define the zero level of potential energy. This helps in calculating the potential difference between different points in the electric field. By setting the potential at infinity to zero, it allows for a consistent and convenient way to describe electric potential.


What will happened to the strength of electric field inside a shell of charge?

Inside a shell of charge, the electric field strength is zero, regardless of the thickness of the shell or the distribution of charge on it. This is due to the property of electrostatics known as Gauss's Law, which states that the electric field inside a closed surface enclosing a charge distribution is zero.


Do electron moves up or fall down a potential gradient?

The potential gradient gives the electric field intensity E at point in electric field which is directed from high to low potential. An electron being a negative charge particle therefore will tend to move from low potential to high potential, hence will move up the electric field


Why electric field is negative gradient of electric potential?

The electric field is the negative gradient of the electric potential because it points in the direction of steepest decrease in potential. This relationship is based on the definition of potential energy as work done per unit charge. Negative gradient signifies the direction of decreasing potential with respect to position in space.

Related Questions

Is the potential zero if the electric field is zero?

Yes, if the electric field is zero, then the electric potential is also zero.


What is the electric potential at the point on the x-axis where the electric field is zero?

The electric potential at the point on the x-axis where the electric field is zero is zero.


If the electric potential is zero, what is the relationship between the electric field and the potential at that point?

If the electric potential is zero, the electric field at that point is perpendicular to the equipotential surface.


If potential is constant throughout a given region of space can you say that electric field is zero in that region?

No, the electric field does not necessarily have to be zero just because the potential is constant in a given region of space. The electric field is related to the potential by the gradient, so if the potential is constant, the electric field is zero only if the gradient of the potential is zero.


The potential is constant through a given region of space Is the electrical field zero or non zero?

If the potential is constant through a given region of space, the electric field is zero in that region. This is because the electric field is the negative gradient of the electric potential, so if the potential is not changing, the field becomes zero.


Is the electric field zero or nonzero in a region of space if the potential is constant throughout this given region?

In a region of space where the potential is constant, the electric field is zero. This is because the electric field is the gradient of the electric potential, so if the potential is not changing, there is no electric field present.


Why is electric potential inside a ring conductor on a conducting paper that has elctric field zero?

The electric potential inside a ring conductor on a conducting paper is zero because the electric field inside a conductor in electrostatic equilibrium is zero. This is due to the charges redistributing themselves in such a way that the electric field cancels out inside the conductor. Since the electric potential is directly related to the electric field, the potential inside the conductor is also zero.


Why electric field is zero when electrical potential is constant?

When the electric field is zero, it means there is no change in electrical potential across the field. In other words, the equipotential surfaces are parallel, indicating a constant electrical potential. This relationship arises from the fact that the electric field is the negative gradient of the electrical potential.


Is an electric field a potential field?

no electric field is not a potential field .ELECTRIC FIELD IS A SCALAR QUANTITY WHERE AS POTENTIAL IS THE VECTOR QUANTITY. NO SCALAR QUANTITY HAS A FIELD SO THERE IS NO RELATION BETWEEN ELECTRIC FIELD AND POTENTIAL OR IN OTHER WORD POTENTIAL HAS NO FIELD <<>> An electric field is a vector field, because it has magnitude and direction. A pair of charged parallel plates has an electric field between them directed from the negative to the positive plate. The electric field is the gradient of the potential, which is another field but a scalar one. A field is just a quantity with a value that depends on positon. The potential is measured in volts and if one plate is grounded and the other at positive potential V, the potential rises from zero to V as the position changes from the lower plate to the top one.


Is it possible that electric intensity at a point is zero but electric potential is not zero?

There are two answers to your question, and they depend on whether we're talking about electrostatics or electrodynamics.Electrostatics:No. In the absence of a varying magnetic field, the electric field intensity is equal to just the negative gradient of the electric potential; E = -∇Φ. So, if Φ is 0, its gradient, which is just the vector field made from the partial derivatives of Φ, has to be 0. The reverse, however, can happen. E can be 0, but Φ doesn't have to be; it can also be a non-zero constant. Electrodynamics:Yes. In the presence of a varying magnetic field, E = -∇Φ - ∂A/∂t, where A is the magnetic vector potential, and t is time. So, if Φ is 0 this time, E can still be equal to the possible non-zero term, -∂A/∂t.


What is relation between electric field intensity and electric potential?

Electric field intensity is related to electric potential by the equation E = -∇V, where E is the electric field intensity and V is the electric potential. This means that the electric field points in the direction of steepest decrease of the electric potential. In other words, the electric field intensity is the negative gradient of the electric potential.


Can you find a point where the electric field is zero?

Yes, the electric field can be zero at points where the net charge is zero or where the electric field vectors cancel each other out.