One mole is 6.02 × 1023 of anything. One mole of atoms is 6.02 × 1023 atoms, one mole of rice is 6.02 × 1023 grains, one mole of shoes is 6.02 × 1023 shoes.
So you multiply 5 with 6.02 × 1023 to get 3.01 × 1024
To find the number of moles of oxygen in 0.16 g of oxygen gas, you first need to determine the molar mass of oxygen (O2), which is about 32 g/mol. Then, you can use the formula moles = mass / molar mass to calculate the number of moles. In this case, 0.16 g / 32 g/mol = 0.005 moles of oxygen gas.
To calculate the mass of 1.5 moles of oxygen molecules (O2), you multiply the number of moles (1.5) by the molar mass of oxygen (O2). The molar mass of O2 is approximately 32 g/mol. So, the mass of 1.5 moles of oxygen molecules would be 1.5 moles * 32 g/mol = 48 grams.
Well to find how many grams are in moles you would eventually multiply the mole by the molar mass. The molar mass of aluminum oxide would be 101.96 ( you would find that by multiplying the atomic mass of al by 2 and o by 3 and adding them together). But the molar mass of Oxygen is just about 48 (rounded to 16 instead of 15.9994)5.75 moles of Al2O3 X 48 g oxygen/1 mole of Al2O3=276 g oxygen in 5.75 mole Al2O3
The relationship between number of moles and mass is: n = m/MW Where n is the number of moles, m is the mass in grams and MW is the molecular weight (or molecular mass). Subsituting the numbers into the equation: 2.5 mol = m/32 (from O2(g), 16 from each oxygen) m = 2.5 * 32 = 80 grams This also means that there is approximately 1.5 x 1024 molecules of O2 in your sample.
To find the mass of oxygen gas released, you need to calculate the mass of magnesium oxide that contributed to the formation of 2.43g of magnesium. Molar mass of MgO = 40.3g/mol Molar mass of Mg = 24.3g/mol Calculate the moles of Mg formed and use stoichiometry to find the moles of oxygen reacted. Finally, convert the moles of O2 to grams to find the mass of oxygen gas released.
To calculate the number of moles of oxygen in the reaction vessel, you need to know the amount of oxygen in grams and its molar mass. Then divide the mass of oxygen by its molar mass to obtain the number of moles. The formula to calculate the number of moles is: moles = mass / molar mass.
The mass of 0,2 moles of oxygen gas is 6,4 g.
The mass of one mole of oxygen atoms is listed on the periodic table (15.999g). Multiply this by three. Be careful. Oxygen is almost never found outside of a molecule. If you are looking for the mass of three moles of oxygen gas, that is three moles of O2. So, you will need to multiply the mass of the atom by two, then multiply by the number of moles.
moles = mass/molar mass The molar mass of an oxygen atom = 16 g mol-1, as there are two oxygen atoms in diatomic oxygen this has to be doubled. 42g / 32g mol-1 = 1.3125 moles
To find the number of moles of oxygen in 0.16 g of oxygen gas, you first need to determine the molar mass of oxygen (O2), which is about 32 g/mol. Then, you can use the formula moles = mass / molar mass to calculate the number of moles. In this case, 0.16 g / 32 g/mol = 0.005 moles of oxygen gas.
The molar mass of oxygen gas (O2) is 32.00 g/mol. Therefore, the mass of 4.00 moles of oxygen gas is 128.00 grams.
The molar mass of oxygen is approximately 16 grams/mol. Therefore, the mass of 3 moles of oxygen would be 3 moles * 16 grams/mole = 48 grams.
2.000 moles of oxygen atoms weigh 32.00 g. 2.000 moles of oxygen molecules, on the other hand, weigh 64.00 g.
To calculate the mass of 1.5 moles of oxygen molecules (O2), you multiply the number of moles (1.5) by the molar mass of oxygen (O2). The molar mass of O2 is approximately 32 g/mol. So, the mass of 1.5 moles of oxygen molecules would be 1.5 moles * 32 g/mol = 48 grams.
The molar mass of the substance is 15.2 g/mol (0.76 g divided by 0.05 mol). Therefore, the mass of 0.05 moles would be 0.76 g.
The gram atomic mass of oxygen is 15.999. The answer to this question is therefore (35.2/15.999) = 2.20, to the justified number of significant digits.
The molar mass of oxygen is 32 g.1,2 mg oxygen is equal to 0,0000375 moles.