Moles of Ca(NO2)2=120/132=0.91 moles
Molarity=0.91/0.24= 3.79M
To find the molarity of the solution, first calculate the number of moles of lithium sulfate in 734g. Then, divide the moles by the volume of solution in liters to get the molarity. Remember to convert grams to moles using the molar mass of lithium sulfate (Li2SO4).
After transferring 50 grams of the 1.7 M NaCl solution to a new beaker, the final amount of NaCl in the original beaker will be 50 grams. To find the new molarity, you would first calculate the new moles of NaCl in the beaker, then divide by the total volume of the solution in liters. The molarity will be reduced in the original beaker due to the dilution from transferring a portion of the solution.
To calculate the molarity of a 5% NaCl solution, you need to know the density of the solution. Once you have the density, you can convert the percentage to grams per liter. Then, using the molar mass of NaCl (58.44 g/mol), you can calculate the molarity using the formula Molarity = (mass of solute in g) / (molar mass of solute in g/mol) / (volume of solution in L).
Need moles aluminum oxide first. 51 grams Al2O3 (1 mole Al2O3/101.96 grams) = 0.5002 moles Al2O3 ======================Now, Molarity = moles of solute/Liters of solution (500 ml = 0.500 Liters ) Molarity =0.5002 moles Al2O3/0.500 Liters = 1.0 M Al2O3 solution ----------------------------
Molarity = moles of solute/volume of solution Find moles NaCl 55 grams NaCl (1mol NaCl/58.44 grams) = 0.941 moles NaCl Molarity = 0.941 moles NaCl/35 Liters = 0.027 Molarity NaCl ( sounds reasonable as 55 grams is not much in 35 Liters of water, which would be about 17.5 2 liter sodas )
If 1,1 is grams the molarity is 0,317.
The molarity of the solution is 0.5 M.
Increasing the amount of the solute in the solution the molarity and the density of this solution increases.
To make a 0.01 M solution of calcium chloride, you would need to calculate the molecular weight of calcium chloride (CaCl2), which is 110.98 g/mol. Since the molarity is 0.01 M, it means there are 0.01 moles of CaCl2 in 1 liter of solution. Therefore, to make the solution, you would need 1.1098 grams of calcium chloride.
To calculate the molarity of the solution, first convert the mass of HCl to moles using its molar mass. Then, divide the number of moles by the volume of the solution in liters (500 cm3 = 0.5 L) to get the molarity.
To calculate the grams of phosphate in a solution, you first need to determine the molarity of the solution. Once you know the molarity, you can use the molecular weight of phosphate to determine the grams present in the solution. Can you provide the concentration or volume of the K2HPO4 solution?
The concentration of a solution can be expressed in many ways. One of them is as the molarity of the solution. A solution with molarity equal to one has one mole of the solute dissolved in every liter of the solutions
The molarity is 0,125 M.
To find the molarity, first convert the grams of sucrose to moles using its molar mass. Sucrose has a molar mass of 342.3 g/mol. Then, convert the milliliters of solution to liters. Finally, divide the moles of solute by the liters of solution to get the molarity.
To make a 0.25 mol solution of sodium nitrite, measure out 8.25 grams of sodium nitrite (NaNO2) (sodium nitrite has a molar mass of 69.01 g/mol) and dissolve it in enough water to make a total volume of 1 liter. This will give you a 0.25 mol/L solution of sodium nitrite.
To make a 0.2 M CaCl2 solution with a final volume of 200 ml, you would need to dissolve 8.8 grams of calcium chloride (CaCl2) in water. This calculation is based on the molar mass of CaCl2 (110.98 g/mol) and the formula for calculating molarity (moles = molarity x volume in liters).
Magnesium sulfide react with water.This is not solubilty and molarity cannot be applied.