2Na2S2O3 + I2 → 2NaI + Na2S4O6 K2Cr2O7 + 6KI + 7H2SO4 → Cr2(SO4)3 + 4K2SO4 + 7H2O + 3I2
The reaction between sodium ethanedioate (sodium oxalate) and potassium dichromate can be represented by the following balanced chemical equation: 3 Na2C2O4 + K2Cr2O7 + 4 H2SO4 → 3 Na2SO4 + K2SO4 + Cr2(SO4)3 + 8 CO2 + 7 H2O In this reaction, sodium ethanedioate reacts with potassium dichromate in the presence of sulfuric acid to form sodium sulfate, potassium sulfate, chromium(III) sulfate, carbon dioxide, and water.
When potassium dichromate reacts with iron (II) sulfate in an acidic solution, a redox reaction occurs. The dichromate ions are reduced to chromium (III) ions, while iron (II) ions are oxidized to iron (III) ions. The overall reaction is 6Fe2+ + Cr2O72- + 14H+ -> 6Fe3+ + 2Cr3+ + 7H2O.
The reaction between potassium dichromate (K2Cr2O7) and iron(II) sulfate (FeSO4) results in a double displacement reaction producing iron(III) chromate (Fe2(CrO4)3) and potassium sulfate (K2SO4). The balanced equation is: 3FeSO4 + K2Cr2O7 → Fe2(CrO4)3 + K2SO4.
The equation between potassium iodate (KIO3) and sodium thiosulfate (Na2S2O3) involves a redox reaction. In the presence of an acid, potassium iodate is reduced to iodine (I2), while sodium thiosulfate is oxidized to form sodium tetrathionate (Na2S4O6). The balanced chemical equation for this reaction is 5Na2S2O3 + 2KIO3 + 8HCl → 5Na2S4O6 + 2I2 + 2KCl + 6H2O.
The product of a combination reaction between potassium and chlorine is potassium chloride (KCl), a white crystalline substance commonly known as table salt.
The reaction between potassium dichromate and hydrochloric acid forms chromic chloride, chlorine gas, and water. This reaction is a redox reaction, as the potassium dichromate is reduced while the hydrochloric acid is oxidized.
The reaction between glucose and acidified potassium dichromate is the oxidation of glucose to form gluconic acid. The chemical equation for this reaction is: C6H12O6 + H2Cr2O7 + H+ -> C6H11O7COOH + Cr2(SO4)3 + H2O
I think the reaction equation can be written as follows: K2Cr2O7 (aq) + BaCl2(aq) ------ BaCr2O7(s) + 2KCl(aq).
The reaction between sodium ethanedioate (sodium oxalate) and potassium dichromate can be represented by the following balanced chemical equation: 3 Na2C2O4 + K2Cr2O7 + 4 H2SO4 → 3 Na2SO4 + K2SO4 + Cr2(SO4)3 + 8 CO2 + 7 H2O In this reaction, sodium ethanedioate reacts with potassium dichromate in the presence of sulfuric acid to form sodium sulfate, potassium sulfate, chromium(III) sulfate, carbon dioxide, and water.
The chemical reaction between hydrogen peroxide (H2O2) and potassium dichromate (K2Cr2O7) in acidic medium produces chromium(III) sulfate (Cr2(SO4)3), water (H2O), and oxygen gas (O2). This reaction is used in the laboratory to test for the presence of alkenes due to the oxidizing properties of potassium dichromate.
When acidified potassium dichromate is reacted with ethanol, the dichromate ion (Cr2O7^2-) is reduced to chromium(III) ion (Cr^3+). This reaction results in the formation of green chromium(III) sulfate (Cr2(SO4)3), with ethanol being oxidized to acetic acid.
The reaction between sodium thiosulfate and copper is as follows: 2Na2S2O3 + Cu → CuS + Na2S4O6
When potassium dichromate reacts with iron (II) sulfate in an acidic solution, a redox reaction occurs. The dichromate ions are reduced to chromium (III) ions, while iron (II) ions are oxidized to iron (III) ions. The overall reaction is 6Fe2+ + Cr2O72- + 14H+ -> 6Fe3+ + 2Cr3+ + 7H2O.
The balanced equation between potassium dichromate (K2Cr2O7) and oxalic acid (H2C2O4) is: K2Cr2O7 + 3H2C2O4 -> Cr2(C2O4)3 + 2K2C2O4 + 4H2O
One would expect that the reaction between an alkene and cold, dilute potassium dichromate is an oxidation to a bifunctional alcohol at the carbons in the double bond. The result is also called a vincinal diol or a glycol. The reaction should be similar to the reaction of an alkene with cold, dilute potassium permangante, however, dichromate is a milder oxidizing agent and may not be as effective. The mechanism for this reaction involves the formation of an intermediete 'ester' with the metal at the carbons of the double bond, breaking the double bond. The it can be shown that the resonance structure of the intermediete complex transfers electron density to the ester linkage and protonates from water at both of the ester sites completing the oxidation.
When iron reacts with potassium dichromate, iron(II) ion is oxidized to iron(III) ion by dichromate, which gets reduced to chromium(III) ion. The balanced chemical equation for this reaction is: 6 Fe^2+ + 14 H^+ + Cr2O7^2- --> 6 Fe^3+ + 2 Cr^3+ + 7 H2O
Yes, potassium iodide would react with sodium carbonate to form potassium carbonate and sodium iodide. This reaction is a double displacement reaction where the cations and anions are exchanged between the compounds.