The dark brown color is due to the formation of manganese dioxide (MnO2)
The purple color spreads when a crystal of potassium permanganate is placed in water due to the dissolution of potassium permanganate molecules in water. Potassium permanganate is a highly soluble compound, and its purple color comes from the permanganate ions in the crystal dispersing in the water. This dispersion allows the purple color to be visible throughout the water.
The color change in the reaction between oxalic acid and potassium permanganate is due to the reduction of purple potassium permanganate (MnO4-) to colorless manganese dioxide (MnO2). This reduction reaction causes the change in color from purple to colorless.
Bromine is solution is orange/red depending on how dilute it is. Potassium permanganate solutions are purple.
Potassium dichromate is orange and when it reacts with ethanol which is a primary alcohol it is going to oxidise it to form aldehyde which is colorless. so the color change is from Orange to Colorless. :)
Potassium permanganate is NOT a reaction. It is a compound, well known for its oxidizing properties. It has the formula KMnO4 . It is purple-black in colour and has a horrible taste. Never taste the powder because it stains the tongue brown.
When ethanol is mixed with potassium permanganate, the purple color of the potassium permanganate fades. This is because ethanol reduces the potassium permanganate to form manganese dioxide, which is a brown precipitate. As a result, the overall color of the solution changes from purple to brown.
When potassium permagnate is added initially to ethanol, ethanol gets oxidised into ethanoic acid using potassium permagnate. Thus, decolorizing potassium permagnate. When excess is added , the color of potassium permagnate persists.
When potassium permanganate reacts with ethanol, it releases oxygen. ie, an atom of oxygen thus converting the ethanol to acetic acid. Initially colour disappears because coloured permanganate ions of potassium permanganate are consumed to oxidise ethanol. C 2 H 5 OH (WITH ALKALINE KMnO 4) CH 3 COOH+H 2 O Remember :When excess is added colour does not change because there is no more alcohol left and hence there is no reaction.
Potassium permanganate is a deep purple color, while potassium manganate VII is typically a green color.
Methylcyclopentanol does not change the color of potassium permanganate because it is not easily oxidizable by the permanganate ion. The structure of methylcyclopentanol does not provide the necessary functional groups or carbon-hydrogen bonds that can be readily oxidized by potassium permanganate.
When potassium permanganate is added to water, the water changes color to a pink or purple hue. This is because potassium permanganate is a strong oxidizing agent that reacts with organic compounds present in the water, causing the color change.
The color is a very strong and deep purple color when concentrated and pinkish in very low concentration.
Purple colour
The color of potassium permanganate does not disappear when excess is added because it is a self-indicating compound. When there is excess potassium permanganate present, it remains in its colored form (purple) to signal that the reaction is complete or that there are no reducers left to interact with.
as it is pink in colour so no external agent is required for titration when we titrate againist another component it will changes it colour to pale pink asd it is end point
The movement of the potassium permanganate color through the water is due to diffusion, a process where particles move from an area of high concentration to an area of low concentration to reach equilibrium. As the potassium permanganate particles spread out in the water, the color becomes more evenly distributed.
The purple color spreads when a crystal of potassium permanganate is placed in water due to the dissolution of potassium permanganate molecules in water. Potassium permanganate is a highly soluble compound, and its purple color comes from the permanganate ions in the crystal dispersing in the water. This dispersion allows the purple color to be visible throughout the water.