It has to do with the VSEPR model for electron shell configurations. Zinc being the final transition metal in the 4th row of the Periodic Table has a full "D" shell of valance electrons. Gallium being the following element in the 4th row now has one valence electron in the "P" shell which is not full. An element with a full valence shell of whatever type will have a higher first ionization energy then an element with a shell that is not full.
because ionization energy increases from left to right on the periodic table. Ionization energy is the amount of energy needed to take an electron away from the atom, or the energy needed to ionize it. Since Sodium is more likely to give up an ion to complete the octet rule, it has a higher ionization energy.
Sodium is less active than magnesium. Magnesium is located higher in the reactivity series of metals than sodium, indicating that magnesium is more reactive and likely to form compounds with other elements compared to sodium.
Phosphorus has a higher energy level so it pulls harder on its electrons.
Magnesium metal is a better conductor than Sodium metal because it has more free electrons to carry electric charge due to its atomic structure. Magnesium has two electrons in its outer shell, compared to Sodium's one, making it a more efficient conductor of electricity. Additionally, the higher atomic mass of Magnesium allows for better mobility of electrons, resulting in higher conductivity.
When sodium hydroxide reacts with magnesium sulfate, a double displacement reaction occurs where the sodium ions from sodium hydroxide switch places with the magnesium ions from magnesium sulfate to form sodium sulfate and magnesium hydroxide. The products of this reaction are aqueous sodium sulfate and a white precipitate of magnesium hydroxide.
The ionisation enthalpy of potassium is lower than that of sodium.
because ionization energy increases from left to right on the periodic table. Ionization energy is the amount of energy needed to take an electron away from the atom, or the energy needed to ionize it. Since Sodium is more likely to give up an ion to complete the octet rule, it has a higher ionization energy.
Chlorine has the higher ionization energy compared to sodium. This is because chlorine has a larger number of protons in its nucleus, creating a stronger positive charge that holds its electrons more tightly.
sodium oxide: 1132oC magnesium oxide: 2852oC
Sodium is less active than magnesium. Magnesium is located higher in the reactivity series of metals than sodium, indicating that magnesium is more reactive and likely to form compounds with other elements compared to sodium.
Phosphorus has a higher energy level so it pulls harder on its electrons.
both are in the same period which accounts for closeness. they are nonetheless different because there are more protons in the nucleus which means electrons are brought closer to it so there is a higher ionisation energy or potential
No, the ionization energy of sodium is not the same as chlorine. The ionization energy of sodium is lower than that of chlorine because sodium requires less energy to remove an electron. Sodium has a single electron in its outer shell, while chlorine has seven electrons in its outer shell, making it harder to remove an electron.
Yes, sodium will react with magnesium to form a compound called sodium magnesium alloy. This reaction typically involves the transfer of electrons from the sodium atoms to magnesium atoms. It is a highly exothermic reaction that can result in the release of significant amounts of energy.
Sodium has only one valence electron, and when that is donated to some other atom, the remaining ion has a noble gas configuration that is highly stable. Disrupting that by another ionization requires much energy. Magnesium has two valence electrons; therefore the second is almost as easy to donate as the first. The third ionization enthalpy of magnesium would be very high.
Magnesium metal is a better conductor than Sodium metal because it has more free electrons to carry electric charge due to its atomic structure. Magnesium has two electrons in its outer shell, compared to Sodium's one, making it a more efficient conductor of electricity. Additionally, the higher atomic mass of Magnesium allows for better mobility of electrons, resulting in higher conductivity.
Na(g) --> Na+(g) + e- First ionisation energy is always: X(g) --> X+(g) + e- with X being an element