The turns ratio is the number of primary turns divided by the number of secondary turns. This is the same ratio as input current to output current. ie the turns ratio N = I1/I2
For an ideal transformer, the voltage ratio is the same as its turns ratio.
If it's a step up or step down transformer and you know the secondary side current, multiply the secondary current by the turns ratio. If you know the power in the secondary winding but not the current, divide the secondary power by the secondary voltage to get the secondary current and then multiply the secondary current by the turns ratio to get the primary current. The turns ratio is the number of turns on the secondary winding divided by the number of turns on the primary winding. For a step up transformer, the turns ratio will be greater then one. If it's a step down transformer, then the turns ratio will be less than one. If you don't know the turns ratio, divide the secondary voltage by the primary voltage to get the turns ratio.
RATIO ERROR The secondary current is less than the expected value. The secondary is less in magnitude. This diffence is known as ratio error. PHASE ERROR The angle between the expected and actual secondary current is known as phase error.
This is the current level needed to energize a transformer to its rated voltageThe clue is in the name! 'Excitation' means to create a magnetic field. So the excitation current is the current drawn from the supply which sets up the magnetic field around the core.
The secondary (output) voltage is determined by the primary voltage and the turns ratio of the transformer. The secondary current is determined by the secondary voltage and the load resistance.
For an ideal transformer, the voltage ratio is the same as its turns ratio.
The primary current on a loaded transformer depends on the secondary current, which is determined by the load. So, if you know the secondary load current, then you can use the turns ratio of the transformer to determine the primary current:Ip/Is = Ns/Np
Transformer turns ratio
If it's a step up or step down transformer and you know the secondary side current, multiply the secondary current by the turns ratio. If you know the power in the secondary winding but not the current, divide the secondary power by the secondary voltage to get the secondary current and then multiply the secondary current by the turns ratio to get the primary current. The turns ratio is the number of turns on the secondary winding divided by the number of turns on the primary winding. For a step up transformer, the turns ratio will be greater then one. If it's a step down transformer, then the turns ratio will be less than one. If you don't know the turns ratio, divide the secondary voltage by the primary voltage to get the turns ratio.
It's approximately the inverse of the voltage- or turns-ratio:
Count the turns ratio of the windings. The voltage ratio is equal to the turns ratio. The current ratio is equal to the inverse of the turns ratio. For instance, a power transformer with a 10:1 turn ratio (primary to secondary) running on 120V will produce 12V. If it consumes 1 ampere from the input, it will provide 10 amperes to the output.
with an ideal electrical transformer with an input current of 2 amps and an output current of 1 amp what is the turns ratio of the secondary and primary coils
No, the turns ratio formula calculates the ratio of the primary to secondary winding turns on a transformer using the number of turns on each winding. Phase voltages and currents are not directly used in this calculation.
The turns ratio of a transformer is the number of primary turns to secondary turns. This defines how the transformer will change the voltage and current. For N1 primary turns, and N2 secondary turns, N1/N2 will be the turns ratio; the secondary voltage will be:the primary voltage x (N2/N1); The secondary current will be:primary current x (N1/N2)
The turns ratio of a current transformer (CT) refers to the ratio of the number of turns in the primary winding to the number of turns in the secondary winding, which determines how the primary current is scaled down to a measurable level. In contrast, the current ratio indicates the relationship between the primary current and the secondary current, reflecting how much the CT reduces the current for measurement purposes. Essentially, while the turns ratio is a design characteristic of the transformer, the current ratio is a functional aspect that describes its performance in operation.
RATIO ERROR The secondary current is less than the expected value. The secondary is less in magnitude. This diffence is known as ratio error. PHASE ERROR The angle between the expected and actual secondary current is known as phase error.
A current transformer is just a transformer designed to dutifully give an output related to turns ratio 1:xx.