It's approximately the inverse of the voltage- or turns-ratio:
A transformer. it steps up / down voltage, and steps down / up current.
'CT' is used to designate current transformers, and 'PT' is used to designate potential transformers. A current transformer provides a ratio of primary current to the secondary. A potential transformer provides a ratio of primary voltage to the secondary. A power transformer (step up or step down) resembles a PT more than a CT.
The primary current is determined by the secondary current, not the other way around. For example, a step up transformer will step up the primary voltage in proportion to the turns ratio of the transformer. Any secondary current is then determined by the secondary voltage and the load, NOT by the primary current. The primary current is then determined by the secondary current in proportion to the reciprocal of the turns ratio.
The ratio of output windings to input windings determines the ratio of output voltage to input voltage. The ratio of current is the inverse.
The turns ratio of a current transformer (CT) refers to the ratio of the number of turns in the primary winding to the number of turns in the secondary winding, which determines how the primary current is scaled down to a measurable level. In contrast, the current ratio indicates the relationship between the primary current and the secondary current, reflecting how much the CT reduces the current for measurement purposes. Essentially, while the turns ratio is a design characteristic of the transformer, the current ratio is a functional aspect that describes its performance in operation.
Yes
The primary current on a loaded transformer depends on the secondary current, which is determined by the load. So, if you know the secondary load current, then you can use the turns ratio of the transformer to determine the primary current:Ip/Is = Ns/Np
Transformer turns ratio
RATIO ERROR The secondary current is less than the expected value. The secondary is less in magnitude. This diffence is known as ratio error. PHASE ERROR The angle between the expected and actual secondary current is known as phase error.
A current transformer is just a transformer designed to dutifully give an output related to turns ratio 1:xx.
A transformer. it steps up / down voltage, and steps down / up current.
'CT' is used to designate current transformers, and 'PT' is used to designate potential transformers. A current transformer provides a ratio of primary current to the secondary. A potential transformer provides a ratio of primary voltage to the secondary. A power transformer (step up or step down) resembles a PT more than a CT.
Power flowing into a transformer must match the power flowing out (minus losses which are minimal). If this is not the case, there's something wrong. Differential protection monitors current only; Current flowing into one side of the transformer will be equal to current flowing out the other side scaled by the turns ratio of the transformer. Since the turns ratio is equivalent to the voltage ratio, this is easily set.
The primary current is determined by the secondary current, not the other way around. For example, a step up transformer will step up the primary voltage in proportion to the turns ratio of the transformer. Any secondary current is then determined by the secondary voltage and the load, NOT by the primary current. The primary current is then determined by the secondary current in proportion to the reciprocal of the turns ratio.
The ratio of output windings to input windings determines the ratio of output voltage to input voltage. The ratio of current is the inverse.
To determine the total units from the given data, you would need to know the current transformer ratio (A). The total units can be calculated by dividing the total kilowatt hours (200 kWh) by the transformer ratio. For example, if the transformer ratio is 100:1, the total units would be 200 kWh / 100 = 2,000 units. If you provide the specific transformer ratio, I can give a more precise answer.
The turns ratio of a current transformer (CT) refers to the ratio of the number of turns in the primary winding to the number of turns in the secondary winding, which determines how the primary current is scaled down to a measurable level. In contrast, the current ratio indicates the relationship between the primary current and the secondary current, reflecting how much the CT reduces the current for measurement purposes. Essentially, while the turns ratio is a design characteristic of the transformer, the current ratio is a functional aspect that describes its performance in operation.