There is not enough information provided to answer. KVA is short for "Kilo Volt Amperes". That is, thousands of Volt Amps. In order to determine how many Amperes are flowing, you must know at what voltage it is operating. Amperes = 45,000 ÷ volts Bill Slugg
At 240v single phase it's 70.8 amps. If it runs on 2 wires plus ground, take the voltage rating of the equipment and divide that into the watts to get amps. At 480v 3 phase it's 25.8 amps. At 208v 3 phase it's 47.2 amps. <<>> There are zero amps in 14 kW. A voltage needs to be stated. I = W/E, Amps = Watts/Volts.
The electrical code states that a 30 HP induction motor at 460 volts three phase will draw 40 amps. <<>> I = 33.34 AMPS IF EFF.= 95% AND P.F.= 85%
The question isn't the number of amps total on your branch circuits, but rather, what your MAIN breaker(s) are rated at. This will determine what size of generator you will need. And be certain that the generator is 3-phase. <<>> The formula you are looking for is Amps = kva x 1000/1.73 x voltage.
277v light fixtures are more efficient to operate and less expensive to install than a 110v fixture of identical wattage. 277v light fixtures are typically installed when 480V 3 Phase primary electric service supplies a commercial or industrial facility. 277v lighting circuits are single phase circuits using one of the 480v primary phases (A,B & C) to Neutral. The higher voltage allows more fixtures per circuit using smaller conductors and longer runs typically required in warehouse lighting applications. ( Amps = Watts/Volts: 400W/277V Fixture = 1.4 Amps, 400W/110V fixture = 3.6 Amps) With 480V 3 Phase primary service, 110V Single Phase power is created using a Step-down transformer. The voltage transformation process consumes power (kWh) and the 277V fixture will consume less kWh than a 110V fixture if identical wattage, especially in fixtures with ballasts such as fluorescent or High Intensity Discharge (HID), like Sodium, Metal Halide or Mercury Vapor.
Answer: To determine the amperage in a circuit. Notes: Power (in watts) = Volts * Amps 16.4 KVA = 480V * Amps 16400 / 480 = Amps ~34.2 = Amps
Still 30 amps, but at 240 V you'll have twice the watts that you would on a 120 V, 30 amp circuit, and after all, watts are what actually does the work.
100 amps to a 3 phase load. Power = 100A x Voltage x 1.73 ((line to line voltage)(1.73=SQRT(3)). 173 amps to each of 3 single phase (line to line) loads. Power = 173A x Voltage (line to line voltage). or... 100 amps to each of 3 single phase (line to neutral) load. Power = 300A x Voltage (line to neutral voltage). Example: - 3 phase, 480v, 100amp to a 3 phase heater. 100A x 480V x 1.73 = 83040 watts. - 3 single phase 480v (L-L voltage) heaters, 100amp. 173A x 480V = 83040 watts. - 3 single phase 277v (L-N voltage) heaters, 100amp. 300A x 277V = 83100 watts.
There is not enough information provided to answer. KVA is short for "Kilo Volt Amperes". That is, thousands of Volt Amps. In order to determine how many Amperes are flowing, you must know at what voltage it is operating. Amperes = 45,000 ÷ volts Bill Slugg
At 240v single phase it's 70.8 amps. If it runs on 2 wires plus ground, take the voltage rating of the equipment and divide that into the watts to get amps. At 480v 3 phase it's 25.8 amps. At 208v 3 phase it's 47.2 amps. <<>> There are zero amps in 14 kW. A voltage needs to be stated. I = W/E, Amps = Watts/Volts.
The most basic calculation is volts multiplied by amps of a circuit for a single phase load.
The electrical code states that a 30 HP induction motor at 460 volts three phase will draw 40 amps. <<>> I = 33.34 AMPS IF EFF.= 95% AND P.F.= 85%
For a single phase circuit, the equation you are looking for is I = W/E. Amps = Watts/Volts.
for three phase the calculation is 30,000 = 1.73*V*I - simple as that. For single Phase the calculation is 30,000 = V*I - simple as that It is important to note the voltage in the first line is Line to Line (typically how it is specified in three phase power systems), and the second line it is Line to neutral. A 30KVA transformer is the same as 30,000VA to find out the Amps you need to divide the voltage if the transformer is single phase for example: 30,000VA / 480V = 62.5 Amps The calculation for a 3 phase transformer is the VA / voltage / 1.73 for example: 30,000VA /480V / 1.73 = 36.12 Amps
The amps you can get from a 500 kVA transformer would depend on the voltage of the transformer's output. To calculate amperage, you can use the formula: Amps = Power (kVA) / Voltage. For example, if the output voltage is 480V, you would get approximately 1041 amps (500 kVA / 480V).
The circuit breaker is sized to the full load amps of the motor times 250%.
To determine the amps for a 500 kVA transformer, you can use the formula: Amps = kVA × 1000 / (Voltage). For example, at a standard voltage of 480V, the calculation would be 500,000 VA / 480V, which equals approximately 1041.67 amps. The specific current will vary based on the voltage level used with the transformer.