answersLogoWhite

0

True. Ohm's law states the voltage is resistance times current.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Electrical Engineering

How does electrical resistance change the current in a circuit?

Electrical resistance is opposition to electric current flow. There is a resistance to the flow of current. And a "balance" between applied voltage and resistance determines how much current will flow in a circuit. For a given applied voltage, if we increase the resistance, the current flow will decrease. For that same applied voltage, if we decrease the resistance, the current flow will increase. It's a simple relationship, and it is set down by the following expression: E = I x R We can also write it as I = E / R and R = E / I Voltage (in volts) is E, current (in amps) is I, and resistance (in ohms) is R. In the first expression, voltage is equal to current times resistance. For a constant voltage, any increase in resistance will cause a decrease in current flow. And any decrease in resistance will cause in increase in current flow. Just as cited earlier.


Voltage across resistor is doubled the current is?

Ohm's law states that the voltage across a resistor is the product of the current times the Resistance or V=I x R (I times R). V is Voltage, R is Resistance, and I is Current or Amperage. So if the Voltage is doubled and Resistance stays the same, the Current will be doubled.


How do you increase amperage without changing voltage or resistance?

You cannot increase amperage without changing voltage or resistance. Ohm's law states that voltage is current times resistance. You cannot change one alone. Not even changing frequency in a capacitive or inductive circuit will do this, because changing frequency represents a change in reactance, which is effectively a change in resistance.


What would be the effect of increasing the voltage of the battery?

Ohm's Law states that Voltage = Resistance (Ohms) * Current (Ampere). So when you increase voltage, you increase current.


What is the relation between load and resistance?

A load is anything that draws current from a source of potential difference. A 'heavy' load will draw a larger current than a 'light' load. A resistor can certainly be used as a load. A low resistance will draw a larger current than a higher resistance and, so, a low resistance represents a high load while a high resistance represents a low load.

Related Questions

Will current increase if the voltage in a circuit is increased?

Ohm's Law states Voltage = Current x Resistance. Hence if voltage is increased and resistance is constant, current will increase proportionally to the rise in voltage.


What is the relationship between the voltage output at the interface and the voltage across the series and parallel circuit?

Ohm's law states that the current in a circuit is inversely proportional to the circuit resistance. There is a single path for current in a series circuit. The amount of current is determined by the total resistance of the circuit and the applied voltage.


How are current, voltage, and resistance related in an electrical circuit?

In an electrical circuit, current is directly proportional to voltage and inversely proportional to resistance. This relationship is described by Ohm's Law, which states that current (I) equals voltage (V) divided by resistance (R), or I V/R.


What is the relationship between voltage, current, and resistance in Ohm's Law?

Ohm's Law states that the relationship between voltage (V), current (I), and resistance (R) in an electrical circuit is given by the equation V I R. This means that the voltage across a circuit is directly proportional to the current flowing through it and the resistance of the circuit.


What is the relationship between voltage and resistance in an electrical circuit?

In an electrical circuit, the relationship between voltage and resistance is described by Ohm's Law. This law states that the voltage across a circuit is directly proportional to the resistance in the circuit. In other words, as resistance increases, the voltage required to maintain the same current also increases. Conversely, if resistance decreases, the voltage required to maintain the same current decreases.


If the resistance in a circuit is doubled while the voltage remains constant the current does what?

If resistance is doubled in a circuit with constant voltage, Ohm's Law (V=IR) states that current (I) would be halved since the voltage is constant. This is because the relationship between resistance and current is inversely proportional.


What is the amperage in an electric circuit when the voltage 120 volts and the resistance is 40 ohms?

Ohm's Law states Voltage = Current x Resistance. You rewrite the equation as Current = Volts / Resistance to solve for current.


How do you find resistance in a circuit?

That entirely depends on whether the resistances are in series or in parallel with each other. Ohm's law states that I=V/R. i.e. current = voltage/resistance. If you know the current and voltage you can find the resistance. You can use algebra to rearrange the formula for R and get that R= V/I. Resistance = voltage/current.


How to calculate the current in a circuit?

To calculate the current in a circuit, you can use Ohm's Law, which states that current (I) equals voltage (V) divided by resistance (R). The formula is I V/R. Simply plug in the values for voltage and resistance to find the current flowing through the circuit.


What is the relationship between current and voltage in an electrical circuit?

The relationship between current and voltage in an electrical circuit is described by Ohm's Law, which states that the current flowing through a circuit is directly proportional to the voltage applied across it, and inversely proportional to the resistance of the circuit. In simpler terms, as the voltage increases, the current flowing through the circuit also increases, assuming the resistance remains constant.


What is the relationship between voltage and current in an electrical circuit?

The relationship between voltage and current in an electrical circuit is described by Ohm's Law, which states that the current flowing through a circuit is directly proportional to the voltage applied across it, and inversely proportional to the resistance of the circuit. This means that as the voltage increases, the current flowing through the circuit also increases, assuming the resistance remains constant.


What is the equation for current flow?

The equation for current flow (I) in a circuit is given by Ohm's Law: I = V/R, where V is the voltage across the circuit and R is the resistance of the circuit. This equation states that the current flowing through a circuit is directly proportional to the voltage across it and inversely proportional to the resistance of the circuit.