answersLogoWhite

0


Best Answer

Core loss is one of the many fixed losses in a transformer.

This means that no matter the loading of the transformer there this loss would be fixed unlike copper loss which depends on the loading of the transformer.

User Avatar

Wiki User

13y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

11y ago

they are two types of losses are there

1)copper losses and 2)core (or)iron losses

again these core losses can be divided into two losses they are

*)eddy current losses

*) hysteresis losses

This answer is:
User Avatar

User Avatar

Wiki User

12y ago

The losses which are occur in transformer are:-

1. Core or Iron loss 2. Copper Loss

1. Core or Iron Loss:- It occur in the magnetic core of the transformer. It includes HYSTERESIS & EDDY CURRENT LOSS. It is constant for particular transformer because core flux is independent of load.

Hysteresis loss is mainly due to the reversal of magnetization in the magnetic material.

Wn= n Bm1.6 f v

Eddy current loss occur due to flow of circulating current in the core, which depends upon the value of emf induced and resistance offered by transformer core.

Core loss= Wn +Wi

We=p Bm2 f2 t2 watt

here, p= constant, t= thickness of core, f= frequency, Bm= maximum flux density

Hence core loss increases by increase in voltage and decrease with increase in frequency.

2. Copper loss:- It occur in the both primary and secondary winding due to their ohmic resistance.

Total copper loss= I12 R1 + I22 R2 = I11 Rep I12 Res

This answer is:
User Avatar

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What are losses of transformer?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Electrical Engineering

Why core losses are negligible in short circuit test of transformer?

I am so sorry for your core losses


What is Full load current in transformer?

The no-load current of a transformer is the current which is drawn from the source at rated voltage and frequency even when no actual load current is being supplied.The no-load current is what must be drawn to overcome the inherent and unavoidable losses of the transformer's components. Those losses comprise the primary circuit's resistance (known either as the "copper losses" or as the "resistance losses") and the transformer's magnetic reluctance (known either as the "iron losses" or as the "magnetic losses").Reluctance is the techical description given to the energy necessary to excite the magnetic circuit and overcome its hysteresis, the effects of eddy currents, etc.For more information see the Related link shown below.


What is the purpose of a high voltage transformer?

if the transformer is distributing transformer then we shoud have to give more prefer to the high volatage to reduce losses if we distibute power at low volage there is more current which causes more losses and in hv system there is high volage and low is current so the losses are also low


What losses can be measured in a short circuit test of a transformer?

Winding copper losses of a transformer can be measured in a short circuit test of a transformer. Impedance voltage is given to the primary and the secondary is often shortcircuited. (some times the reverse is done of this). Full load currents are made to flow in both primary and secondary circuits. This current flow heats up the 2 windings of the transformer. Power consumed at this time gives the transformer copper losses.


How do you reduce core losses?

There are various measures that can be taken to reduce core losses. Lamination of the transformer core is believed to reduce core losses significantly.

Related questions

What will happen if iron losses and copper losses are equal for any transformer?

The transformer will have the maximum efficiency.


What is the significant relationship of the no load loss in excitation current test in transformer?

The no load losses are the losses caused by energizing the transformer. These are constant losses, regardless of loading. This in effect tells you the efficiency of the transformer. (Power in) - (no load losses) = (Power out)


What is the use of ideal transformer?

Ideal transformer is useful in understanding the practical transformer..i does't have losses...


What is copper loses in transformer?

Losses due to loading. As more load (more current) is put on a transformer, these losses will increase. They are often referred to as I2R (or I^2*R) losses.


Why core losses are always fixed in transformer?

Core losses are losses in the magnetic system of the transformer, such as eddy currents in the core, hysteresis losses, etc. Because of this, the losses are constant, regardless of load, assuming voltage and frequency stay fixed.


What is the percentage load at which maximum efficiency occurs for the single phase transformer?

That is the maximum efficiency occurs when the copper losses are equal to the core losses of the transformer.


How to calculate transformer core loss and iron loss?

there are several losses in a transformer that prevent it from attaining 100% efficiency. One is core loss, which can be divided into Hysteresis losses, Eddy currents and Magnetostriction loses. see for more details http://en.wikipedia.org/wiki/Transformer#Energy_losses


What is the reason to use open circuit and short circuit methods to find Transformer losses?

The transformer can be tested on open and short circuit to find the iron losses and copper losses separately, which uses a fraction of the power than having to run the transformer on full-load.


For 250 KVA transformer how many KVAR to be paralleled for no load loss?

No load losses are real power losses (in watts, not vars), so I'm not sure what you're talking about. If you're trying to parallel a transformer with another one to try to cancel out no load losses, you can't do this. These losses are also called core losses and are the price you pay to energize a transformer.


Which machine have very less losses in electrical?

Transformer


Why are iron losses considered as constant losses in transformer?

Iron losses are due to energization of the transformer; they do not depend on the loading of the transformer. They will vary depending on the voltage applied to the transformer. The best model of this is a parallel connection to the ideal transformer winding.


Why core losses are negligible in short circuit test of transformer?

I am so sorry for your core losses