answersLogoWhite

0

What else can I help you with?

Continue Learning about Electrical Engineering

Diffrentiate n-type and p-type?

When pentavalent impurity is added to pure semiconductor, it is known as N-Type semiconductor. In N-type semiconductor electrons are majority carriers where as holes are minority carriers. impurities such as Arsenic, antimony are added. When trivalent impurity is added to pure semiconductor, it is know as P-type semiconductor. In P-type semiconductor holes are majority carriers whereas electrons are minority carriers. Impurities such as indium, galium are added.


What are N type and p type substances?

p-TYPE SUBSTANCE:If a trivalent element from the IIIrd group such as Gallium (Ga) or Indium (In) is added to pure crystals of germanium (Ge) or silicone (Si), three electrons of impurity form covalent bonds with three atoms of (Ge) or (Si), while there exist a vacancy for an electron in the fourth bond. This vacant space is called Hole. This hole behaves like a positive charge and can move in the structure of substance. Such a substance is called a p-type substance.n-TYPE SUBSTANCE:If a pentavalent element from the Vth Group such as Antimony (Sb) is added to pure geranium (Ge) or silicone (Si), then four electrons of (Sb) will form covalent bonds with four (Ge) or (Si) atoms. The fifth electron of 'Sb' is free to move which makes (Ge) or (Si) a good conductor. This type of material is called n-type substance.Reference: http://www.citycollegiate.com/electronicsXa.htm


What are trivalent and pentavalent impurities?

Doping is the process of adding impurity atoms to intrinsic silicon or germanium to improve the conductivity of the semiconductor. The term impurity is used to describe the doping elements. Two element types are used for doping: trivalent and pentavalent. A trivalent element is one that has three valence electrons A pentavalent element is one that has five valence electrons. When trivalent atoms are added to intrinsic semiconductors, the resulting material is called a p-type material. When pentavalent impurity atoms are used, the resulting material is called an n-type material. The most commonly used doping elements are listed below. Commonly Used Doping Elements Trivalent Impurities To make p-type Aluminum (Al) Gallium (Ga) Boron (B) Indium (In) Pentavalent Impurities To make n-type Phosphorus (P) Arsenic (As) Antimony (Sb) Bismuth (Bi)


How does doping effect the depletion layer in a semiconductor?

A semiconductor has an energy band (a range of energy levels) that is forbidden -- ideally void of charged particles at all temperatures. Practically, at low temperatures (T < 40 K for silicon), the probability of finding a free charge carrier outside the forbidden gap is nearly nil. When the temperature is increased, the probability of finding a free charge carrier outside the forbidden gap increases, but the net charge is still zero (negative charge exactly cancels positive charge). However, an intrinsic semiconductor (pure or undoped) is just a resistor of little importance (other materials are cheaper and better-controlled than a semiconductor). When we introduce foreign atoms into a semiconductor (the process is called doping), we change its electrical properties -- it has a lot more free charge carriers than an intrinsic semiconductor, although again, the net charge is zero. The total charge of free carriers is balanced by immobile ions of equal and opposite total charge. For example, boron and indium will be used to dope silicon p-type; phosphorus and arsenic will be doping silicon n-type. I am quoting boron, phosphorus, and silicon as examples from hereon. p-type doping is a process where a silicon atom in the lattice is replaced by a boron atom. A Boron atom has 3 electrons in the outer shell, compared with an electron occupancy of 4 for a silicon atom. So a Boron atom provides a vacancy for any free electrons to occupy with a little effort, when an electron chances to be nearby (the four boron-silicon covalent bonds needs 8 electrons to be stable, but only 7 are provided). The net charge of the material is still zero. More about from where the free electron is coming. n-type doping is using a phosphorus atom to replace a silicon atom. A phosphorus atom has 5 electrons in the outer shell. So a phosphorus atom provides an electron that can be freed with a little effort (the four phosphorus-silicon covalent bonds only need 8 electrons to be stable, each atom needing only to contribute four electrons; the 9th electron will be loosely bound). The net charge of the material is still zero. Where can the electron go? Magic happens when a p-type silicon is brought in contact with an n-type silicon to form a pn junction. The excess electron vacancies (holes) in p-Si now can exchange with the excess electrons in n-Si, but the net charge of the p-n silicon entity is still zero. However, microscopically, a depletion region is formed at the pn junction, where excess carriers can cross over to the other side. In the p-Si, excess electrons from the n-Si start filling up the holes (the lack of the 8th outer-shell electron to form the four stable boron-silicon covalent bonds) and negatively-charged boron atoms are formed. In the n-Si, excess holes from the p-Si start swallowing up the loosely-bound electrons (the 9th electron in the outer shell) of phosphorus atoms and positively-charged phosphorus atoms are formed. Once formed, and in the absence of an electric field, the depletion region now presents an energy barrier to any further carrier movement and a steady state results -- no net current in the pn junction.


Related Questions

What kind of semiconductor is produced by adding indium in semiconductor crystals?

it is metal.. so not used for doping.


IS indium a p type semiconductor?

No, indium is not a p-type semiconductor on its own. Indium is typically used as a dopant in semiconductors to tune their electrical properties, such as increasing the conductivity or modifying the bandgap.


What does the Indium Corporation do?

Indium Corporation supplies soldering materials to electronics, semiconductor, solar and thin film markets. They develop and manufacture materials used in the electronics assembly.


How is a semiconductor made p-type?

by doping it with p-type impurities: boron, aluminum, gallium, indium; that have 3 valence electrons.


How is a semiconductor made p type?

by doping it with p-type impurities: boron, aluminum, gallium, indium; that have 3 valence electrons.


Draw the table of semiconductor elements?

Sure, here is a concise table of common semiconductor elements: Silicon (Si): Widely used in electronic devices due to its abundance and semiconductor properties. Germanium (Ge): Another commonly used semiconductor with properties similar to silicon. Gallium (Ga): Used in specialized devices like LEDs and solar cells. Indium (In): Often used in combination with gallium to create indium gallium arsenide (InGaAs) for high-speed electronics. Arsenic (As): Combined with other elements to create semiconductor materials like gallium arsenide (GaAs) for high-frequency applications.


Diffrentiate n-type and p-type?

When pentavalent impurity is added to pure semiconductor, it is known as N-Type semiconductor. In N-type semiconductor electrons are majority carriers where as holes are minority carriers. impurities such as Arsenic, antimony are added. When trivalent impurity is added to pure semiconductor, it is know as P-type semiconductor. In P-type semiconductor holes are majority carriers whereas electrons are minority carriers. Impurities such as indium, galium are added.


What is the name given to the semiconductor device that has three or more elements?

A semiconductor device with three or more elements is called a compound semiconductor. It is made up of elements from different groups on the periodic table, allowing for unique properties and applications in electronics. Examples include gallium arsenide (GaAs) and indium phosphide (InP).


What is the formula for indium bromide?

Indium forms the following bromides InBr3, indium tribromide, indium (III) bromide InBr, Indium monobromide, Indium(I) bromide InBr2, indium dibromide, In+ InBr4- , indium (I,III) bromide there are others which are not so well known


What has indium in it?

caves have indium in it


What are some products made from indium?

Indium wire and indium foil


What is led and how does it work?

A light emitting diode is a special type of diode made of transparent semiconductor (silicon & germanium are opaque) like aluminum indium gallium phosphide. The selected semiconductor must also have a large enough band gap that when electrons fall into holes photons are emitted.