It is connected to the secondary side.
A normal transformer should not blow the primary side breaker when it is not connected to a load on the secondary. If it does, something is wrong. Check for shorted or burned windings. Make sure that it is indeed disconnected from the load - it might still be connected to something that is also presenting a fault.
A transformer is fundamentally a set of coils; therefore, a transformer is an inductive load. However, by "transformer load", you seem to mean "the load that is connected to a transformer". Whether that load is inductive or capacitive depends mostly on what is hooked up to the transformer.
The primary winding of a transformer is connected to the supply, while the secondary winding is connected to the load.
The load is connected to the transformer's secondarywinding, while the primary winding is connected to the supply. The terms, 'primary' and 'secondary', do NOT relate to voltage levels.
Hope this helpsAn "OFF-Load tap transformer" can only have it's tap adjusted when it is De-energized,while the "On-Load tap transformer" can adjust its tap under load conditions.Kind RegardsHammad KhanUniversity of Western AustraliaAnswerAn 'off load' transformer is one whose secondary is open circuited, and not supplying a load. An 'on load' (not 'load') transformer is one that is connected to a load.
The load side of a transformer feeds the device, such as a light or motor. It is the output of the transformer. The input, or line side, provides the voltage that is to be transformed, either up or down, to supply the load side.AnswerA transformer's primary winding is connected to the supply voltage, and the secondary winding is connected to the load.
b'coz at the secondary side large amount of current flow by recarding of active component or other ckt. which is connected to the secondary side so that ckt. is not damage or burned by flowing large amount .. load is connected at the secondary side .AnswerThe 'primary' winding of a transformer is, by definition, whichever winding is connected to the supply, whereas the 'secondary' winding is whichever winding is connected to the load. This does not mean that a load MUST be connected to a transformer, as it will work 'off load' -that is, with no load connected- without any harm.
Measure the current and voltage on the secondary side.
A normal transformer should not blow the primary side breaker when it is not connected to a load on the secondary. If it does, something is wrong. Check for shorted or burned windings. Make sure that it is indeed disconnected from the load - it might still be connected to something that is also presenting a fault.
since we need to get desired or rated voltage, so if it is connected in high voltage side of the transformer, voltage supply will be more, and hence the current will be more than the required amount. this is the reason why the instruments re connected at the low voltage of the transformer while performing no load test.
A transformer is fundamentally a set of coils; therefore, a transformer is an inductive load. However, by "transformer load", you seem to mean "the load that is connected to a transformer". Whether that load is inductive or capacitive depends mostly on what is hooked up to the transformer.
The primary winding of a transformer is connected to the supply, while the secondary winding is connected to the load.
A no-load test is done with the normal supply connected in the way the transformer is intended to be used. It is also known as an open-circuit test to distinguish it from a short-circuit test, and its purpose is to measure the power loss in the iron core of the transformer and the no-load current drawn from the supply.
The load is connected to the transformer's secondarywinding, while the primary winding is connected to the supply. The terms, 'primary' and 'secondary', do NOT relate to voltage levels.
Whichever winding is connected to the supply is the primary winding; whichever winding is connected to the load is the secondary winding.
Hope this helpsAn "OFF-Load tap transformer" can only have it's tap adjusted when it is De-energized,while the "On-Load tap transformer" can adjust its tap under load conditions.Kind RegardsHammad KhanUniversity of Western AustraliaAnswerAn 'off load' transformer is one whose secondary is open circuited, and not supplying a load. An 'on load' (not 'load') transformer is one that is connected to a load.
Compare a transformer to a balancing act. Both side need to remain equal.The primary side of the transformer is the supply side and the load is connected to the secondary side of the transformer.The load governs the current of the secondary side of the transformer and the voltage of the secondary side must match the voltage that the load required to operate.The ratio of the transformer will determine what the voltage of the secondary side is as compared to the voltage that has to be applied to the primary.The current of a step up transformer will be higher on the primary side that that of the secondary.Apply voltage and current to this concept and you will see that the transformer will remain balanced.The size of the transformer is always calculated from the secondary side of the transformer and the value is written in VA or KVA where V = voltage and A = amperage. Power factor is also taken into consideration when calculating the size of the transformer to be used.