Because the armature (or rotor) has no external connection. The currents that produce torque from the rotor are induced by the magnetic field in the machine, so there is no commutator, no brushes and no armature reaction.
Armature reaction is the interaction between the magnetic flux produced by armature current and that of the main magnetic field in an electric motor or generator.
The Armature(or rotor) is a electromagnet inside a motor and alters the magnetic field inside the motor when it rotates. In DC motors it is connected to a Commutator. In AC induction motors the armature isn't connected to a power source.
to speed up the motor.
Armature reaction is effect of armature flux on main field flux. Basically there are two windings in a dc motor - Armature winding (on stator) and field winding (on rotor). When we excite the field winding, it produces a flux which links with the armature. This causes an emf and hence a current in the armature. This current in armature produces another flux which lags the main flux. This is referred to as armature reaction. It has two effects on the machine: 1. Demagnetising effect: It reduces the strength of the main flux. 2. Crossmagnetising effect: Its effect is that it bends/distortes the the main flux line along the conductor
No,look at the connection diagram for Universal motor. The Field and the armature windings are connected in series. But, in induction motor, the rotor end terminals are sorted by a kind of rings.That is rotor is apart from the supply.
Armature reaction is the interaction between the magnetic flux produced by armature current and that of the main magnetic field in an electric motor or generator.
The Armature(or rotor) is a electromagnet inside a motor and alters the magnetic field inside the motor when it rotates. In DC motors it is connected to a Commutator. In AC induction motors the armature isn't connected to a power source.
to speed up the motor.
Armature reaction is effect of armature flux on main field flux. Basically there are two windings in a dc motor - Armature winding (on stator) and field winding (on rotor). When we excite the field winding, it produces a flux which links with the armature. This causes an emf and hence a current in the armature. This current in armature produces another flux which lags the main flux. This is referred to as armature reaction. It has two effects on the machine: 1. Demagnetising effect: It reduces the strength of the main flux. 2. Crossmagnetising effect: Its effect is that it bends/distortes the the main flux line along the conductor
No,look at the connection diagram for Universal motor. The Field and the armature windings are connected in series. But, in induction motor, the rotor end terminals are sorted by a kind of rings.That is rotor is apart from the supply.
In dc motors, the electric power is conducted directly to the armature (i.e., rotating part) through brushes & commutator. Hence, in this sense a dc motor can be called as a Conduction motor. However, in ac motors, the rotor does not receive any electric power by conduction but by induction in exactly the same way as the secondary of a two winding transformer receives its power from the primary. That is why such motors are called as Induction motors. An induction motor can be treated as a rotating transformer i.e., one in which primary winding is stationary but secondary is free to rotate.
Armature current is the current flowing in a motor's armature. The "armature" is another name for the coil (or coils) of wire which are on the motor's "rotor", which is the part that rotates inside its stator. (The "stator" is the fixed, non-rotating part of the motor.)
Commutating field windings are connected in series with the armature windings so that the current flowing in the coils is always equal to the armature current. The number of turns in the commutating field windings are also equal to the number of armature turns. This means that the field strength of the commutating windings and the field strength of the armature are always equal. A DC motor is constructed so that these two fields of equal strength oppose one another, they therefore cancel one another out. The main field is now unaffected by armature reaction.
Armature reaction is the phenomenon in DC machines where the magnetic field produced by the current flowing in the armature windings interacts with the main magnetic field produced by the field windings. This interaction can distort the main magnetic field, causing changes in the machine's performance such as voltage regulation and torque production. Measures such as interpoles or compensating windings are used to counteract the effects of armature reaction in DC machines.
armature reactant means loss in armature associated with inductive properties of the coil, while armature reaction include losses due to magnetizing component of current flowing through armature.
Yes the Induction motor works on Electromagnetic induction principle.
in order to reduce armature reaction.