answersLogoWhite

0

yes indused emf is also called motional emf.

If an open coil is subjected to a variable magnetic field, at the ends of the coil a potential difference is induced which is called induced emf.

If a coil is connected to an emf source and switched on, the rising current will produced an variable magnetic field which in turn produces an emf. It is called back emf.

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Engineering

Difference between back EMF and induced EMF?

An induced electromotive force (emf) is an induced voltage. Voltage (emf) causes current flow, and this induced voltage will cause a current that is called the induced current.We might also add that the induced current will cause a magnetic field to expand about the current path, and this field will "sweep" the conductor. The sweeping of the conductor by that expanding magnetic field will set up an emf that will oppose the emf that was creating it.CommentTechnically, there is no such thing as an 'induced current'. It is voltage that is induced. Any current flows as a result of that induced voltage being applied to a load. But that current is certainly NOT induced!


What are the Example each for self induced and mutually induced emf?

if an emf is induced in a coil due to the current flowing through itself is called SELF INDUCTANCE. on the other hand if an emf is induced on another coil due to the current flowing through the previous coil then it is called MUTUAL INDUCTANCE. suppose there are two coils A and B a current is flowing through A. now if the flux produced due to this current induce an emf on the same coil A, then it is SELF INDUCTANCE, and if it produce emf on B, then it is MUTUAL INDUCTANCE due to coil A.


Why induced current in a coil opposes the EMF producing it?

lenzs law


What is the main cause for the coefficient of coupling of a transformer being less than unity?

initially the induced emf i.e.,self inductance is high than mutually induced emf in the other .....so coefficient of coupling is high


If a conductor placed in electric field is there any emf induced in the conductor?

one condition for the above question is either conductor or magnetic field must be rotating.considering rotating field and stationary conductor,the magnetic flux will be cut up by conductor resulting in the induced emf in the conductor.

Related Questions

How are motion induced electric fields and motional emf related in the context of electromagnetic induction?

Motion-induced electric fields and motional emf are related in the context of electromagnetic induction because both phenomena involve the generation of an electric field due to a changing magnetic field. When a conductor moves through a magnetic field, it experiences a motional emf, which is the voltage induced in the conductor. This motional emf is caused by the motion-induced electric fields that are generated in the conductor as a result of the changing magnetic field. In essence, motion-induced electric fields lead to the generation of motional emf through electromagnetic induction.


How can one effectively understand and solve problems related to motion-induced electric fields and motional emf in the context of mastering physics?

To effectively understand and solve problems related to motion-induced electric fields and motional emf in mastering physics, one must grasp the concepts of electromagnetic induction and Faraday's law. By applying these principles, one can analyze the motion of charged particles in magnetic fields and calculate the induced electric fields and emf. Practice and familiarity with relevant formulas and problem-solving techniques are key to mastering this topic in physics.


What is motional emf?

Induced Current and Motional EmfThe electric field in the metal bar causes a potential difference of V = El = vBl. If the bar slides along metal rails, as in the figure below, a closed circuit is set up with current flowing in the counterclockwise direction, up the bar and then around the metal rail back to the bottom of the bar. TInduced Current and Motional EmfThe electric field in the metal bar causes a potential difference of V = El = vBl. If the bar slides along metal rails, as in the figure below, a closed circuit is set up with current flowing in the counterclockwise direction, up the bar and then around the metal rail back to the bottom of the bar. This is called an induced current.The moving bar is a source of an electromotive force, called motional emf, since the emf is generated by the motion of the bar.The force is defined as:The magnitude of the induced emf can be increased by increasing the strength of the magnetic field, moving the bar faster, or using a longer bar.ExampleA bar of length 10 cm slides along metal rails at a speed of 5 m/s in a magnetic field of 0.1 T. What is the motional emf induced in the bar and rails?Now that we've defined motional emf, solving this problem is simply a matter of plugging numbers into the appropriate equation:his is called an induced current.


Difference between back EMF and induced EMF?

An induced electromotive force (emf) is an induced voltage. Voltage (emf) causes current flow, and this induced voltage will cause a current that is called the induced current.We might also add that the induced current will cause a magnetic field to expand about the current path, and this field will "sweep" the conductor. The sweeping of the conductor by that expanding magnetic field will set up an emf that will oppose the emf that was creating it.CommentTechnically, there is no such thing as an 'induced current'. It is voltage that is induced. Any current flows as a result of that induced voltage being applied to a load. But that current is certainly NOT induced!


What is the relationship between the motion of a conducting rod and the generation of motional emf within the rod?

The motion of a conducting rod can generate motional electromotive force (emf) within the rod. When the rod moves through a magnetic field, it experiences a change in magnetic flux, which induces an emf according to Faraday's law of electromagnetic induction. This emf can create an electric current in the rod, leading to the generation of electrical energy.


What is the induced emf in case (a)?

In case (a), the induced emf is the electromotive force generated in a coil or conductor due to a changing magnetic field.


In colomn answer of difference between statically indused emf and dynamicaly indused emf?

Statically induced emf is produced by the relative motion between a conductor and a magnetic field, while dynamically induced emf is generated due to a change in the magnetic field strength experienced by a conductor. Statically induced emf does not require any physical movement of the conductor, while dynamically induced emf is produced when the magnetic field changes over time.


Can emf induced without an alternating magnetic flux?

No. EMF can only be induced in a wire by a varying magnetic flux. It does not have to be alternating, but it must be varying.


Difference between statically and dynamically induced emf?

STATICALLY INDUCED EMFThe emf induced in a coil due to change of flux linked with it (change of flux is by the increase or decrease in current) is called statically induced emf.Transformer is an example of statically induced emf. Here the windings are stationary,magnetic field is moving around the conductor and produces the emf.DYNAMICALLY INDUCED EMFThe emf induced in a coil due to relative motion of the conductor and the magnetic field is called dynamically induced emf.example:dc generator works on the principle of dynamically induced emf in the conductors which are housed in a revolving armature lying within magnetic field


How can you say that ac emf is induced in the coil?

When we place a current carrying conductor in a magnetic field emf is induced in a coil. we can knoe it by connecting voltmeter.


What is the induced electromotive force (EMF) in this loop?

The induced electromotive force (EMF) in a loop is the voltage generated when there is a change in magnetic field within the loop.


Is lenz law used to find induced EMF's?

It's primary usage is to determine the nature of an induced EMF from changes in the magnetic flux through a circuit. However, you must use Faraday's Law (and a unit conversion factor) to determine the SIZE of such an EMF.