In case (a), the induced emf is the electromotive force generated in a coil or conductor due to a changing magnetic field.
Statically induced emf is produced by the relative motion between a conductor and a magnetic field, while dynamically induced emf is generated due to a change in the magnetic field strength experienced by a conductor. Statically induced emf does not require any physical movement of the conductor, while dynamically induced emf is produced when the magnetic field changes over time.
The induced electromotive force (EMF) in a loop is the voltage generated when there is a change in magnetic field within the loop.
The average induced electromotive force (emf) in the loop is the average amount of voltage generated in the loop due to a changing magnetic field.
Motion-induced electric fields and motional emf are related in the context of electromagnetic induction because both phenomena involve the generation of an electric field due to a changing magnetic field. When a conductor moves through a magnetic field, it experiences a motional emf, which is the voltage induced in the conductor. This motional emf is caused by the motion-induced electric fields that are generated in the conductor as a result of the changing magnetic field. In essence, motion-induced electric fields lead to the generation of motional emf through electromagnetic induction.
When a magnetic field is applied to a coil, it creates an induced electromotive force (emf) in the coil. This emf is generated due to the change in magnetic flux through the coil, according to Faraday's law of electromagnetic induction.
An induced electromotive force (emf) is an induced voltage. Voltage (emf) causes current flow, and this induced voltage will cause a current that is called the induced current.We might also add that the induced current will cause a magnetic field to expand about the current path, and this field will "sweep" the conductor. The sweeping of the conductor by that expanding magnetic field will set up an emf that will oppose the emf that was creating it.CommentTechnically, there is no such thing as an 'induced current'. It is voltage that is induced. Any current flows as a result of that induced voltage being applied to a load. But that current is certainly NOT induced!
yes indused emf is also called motional emf. If an open coil is subjected to a variable magnetic field, at the ends of the coil a potential difference is induced which is called induced emf. If a coil is connected to an emf source and switched on, the rising current will produced an variable magnetic field which in turn produces an emf. It is called back emf.
Statically induced emf is produced by the relative motion between a conductor and a magnetic field, while dynamically induced emf is generated due to a change in the magnetic field strength experienced by a conductor. Statically induced emf does not require any physical movement of the conductor, while dynamically induced emf is produced when the magnetic field changes over time.
No. EMF can only be induced in a wire by a varying magnetic flux. It does not have to be alternating, but it must be varying.
STATICALLY INDUCED EMFThe emf induced in a coil due to change of flux linked with it (change of flux is by the increase or decrease in current) is called statically induced emf.Transformer is an example of statically induced emf. Here the windings are stationary,magnetic field is moving around the conductor and produces the emf.DYNAMICALLY INDUCED EMFThe emf induced in a coil due to relative motion of the conductor and the magnetic field is called dynamically induced emf.example:dc generator works on the principle of dynamically induced emf in the conductors which are housed in a revolving armature lying within magnetic field
When we place a current carrying conductor in a magnetic field emf is induced in a coil. we can knoe it by connecting voltmeter.
The induced electromotive force (EMF) in a loop is the voltage generated when there is a change in magnetic field within the loop.
It's primary usage is to determine the nature of an induced EMF from changes in the magnetic flux through a circuit. However, you must use Faraday's Law (and a unit conversion factor) to determine the SIZE of such an EMF.
if an emf is induced in a coil due to the current flowing through itself is called SELF INDUCTANCE. on the other hand if an emf is induced on another coil due to the current flowing through the previous coil then it is called MUTUAL INDUCTANCE. suppose there are two coils A and B a current is flowing through A. now if the flux produced due to this current induce an emf on the same coil A, then it is SELF INDUCTANCE, and if it produce emf on B, then it is MUTUAL INDUCTANCE due to coil A.
According to Faraday's laws of electromagnetic induction, whenever a varving flux link with a conductor an emf is induced.
The average induced electromotive force (emf) in the loop is the average amount of voltage generated in the loop due to a changing magnetic field.
In dc motor, the armature conductors are revolving in the magnetic field and emf is induced in the armature conductors. The direction of the induced emf is in opposite direction to the applied voltage as per Flemings left hand rule. So, the induced emf in motor is called as back emf or counter emf. Vydehi