A depletion region is formed when there is a junction of p and n type semiconductor impurities. As one moves across the junction from one end to the other, one sees a change in the free carrier density from naturally high on one side to naturally low on the other. It is true of both n and p type carriers in every juntion, albeit in opposite directions. This gradient of charges can create an avalanche of current except that it is counteracted by a strong electric field at the junction; the greater the gradient of mobile charges, the larger the electric field. The region of this electric field is called the depletion region because the free electric carriers are less dense in the region than they naturally occur. The loss of these carriers leaves charged semiconductor atoms in the region in their wake. By Coulomb's law, the total number of charged atoms required is fixed by the amount of electric field and the two are proportional. Hence, in a lightly doped semiconductor, the depth to which the electric field penetrates (i.e the depth of the depletion region) is larger because the density of charged atoms is low.
When the electric field in a circuit increases, the voltage between two points typically increases as well. This is because voltage is directly related to the electric field and the distance between the points, following the relationship ( V = E \cdot d ), where ( V ) is voltage, ( E ) is the electric field strength, and ( d ) is the distance. Thus, an increase in the electric field generally results in a higher voltage across the same distance.
The lines in each diagram represent an electric field. The stronger the field, the close together the lines are.
Converts mechanical energy into electricity. Movement of magnetic field across a conductor will cause electron flow. The windings of a generator are rotated within a magnetic field.
Crystal diode for a p-type semiconductor and n-type semiconductor formation of the pn junction, in its interface on both sides of a space-charge layer, and has a self-built electric field. When there is no applied voltage, as pn junction on both sides of carrier concentration caused by the proliferation of poor self-built electric current and drift arising from the current equivalent and the balance of power in the state. When the outside world a positive bias voltage, electric and outside the field of mutual self-suppression role of the Consumers carrier increase from the current spread of the forward current. When the outside world a reverse bias voltage, external electric field and to further strengthen self-built electric field, in a certain form of reverse voltage and reverse bias voltage value unrelated to reverse saturated current I0. When the reverse voltage applied to a certain high level, pn junction in the space charge of the electric field strength to achieve the critical values of the double-carrier process, a large amount of electronic hole right, had a great numerical breakdown of the reverse current, Breakdown phenomenon known as diodes.
When sufficient forward voltage is applied across the junction, the electric field opposing the further diffusion of electrons from n-type to p-type semiconductor gets lost. The electric field created due to the application of the forward voltage opposes that of the barrier potential and finally vanishes the barrier completely.
The quasi-neutral region in a PN junction helps balance the concentration of charge carriers (electrons and holes) on both sides of the junction. This region allows for the flow of current by providing a pathway for the charge carriers to move across the junction. It contributes to the overall behavior of the junction by facilitating the formation of an electric field that helps regulate the flow of current through the junction.
for apex its: a quantum field, a gravitational field
Electric current flows in metals due to the movement of free electrons. When a voltage is applied across a metal conductor, the electric field created causes the free electrons to move in the direction of the field, creating a flow of charge which we refer to as electric current.
The needle of a compass will deflect from its original position when a wire carrying an electric current is placed across it. This is due to the magnetic field created by the current in the wire, which interacts with the magnetic field of the compass needle, causing it to move.
The force that causes electrons to move in a conductor is an electric field created by a voltage difference across the conductor. This electric field exerts a force on the negatively charged electrons, causing them to flow in the direction of the electric field.
A magnetic field is created by moving electric charges, while an electric field is created by stationary electric charges. The properties of a magnetic field include direction and strength, while an electric field has direction and magnitude. The interactions between magnetic fields involve attraction or repulsion of magnetic materials, while electric fields interact with charges to create forces.
The electric field between two plates is directly proportional to the potential difference across them. This relationship is described by the equation E V/d, where E is the electric field, V is the potential difference, and d is the distance between the plates.
A magnetic field is created by moving electric charges, while an electric field is created by stationary electric charges. These fields interact with each other through electromagnetic induction, where a changing magnetic field can induce an electric field and vice versa. This interaction is the basis for many technological applications, such as generators and transformers.
The electric field between two plates is determined by the voltage applied across them. The electric field strength is directly proportional to the voltage and inversely proportional to the distance between the plates.
a field of electricity created by a living organism
To determine the electric field in a wire, one can use the formula E V/d, where E is the electric field strength, V is the voltage across the wire, and d is the distance along the wire. This formula helps calculate the force experienced by a charge in the wire due to the electric field.